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An Introduction to Ricci Flow and Volumetric Approximation with

Applications to Shape Modeling
Giuseppe Patané⇤ Xin Shane Li† David Xianfeng Gu‡

Abstract

Extending a shape-driven map to the interior of the input shape
and to the surrounding volume is a difficult problem since it
typically relies on the integration of shape-based and volumetric
information, together with smoothness conditions, interpolating
constraints, preservation of feature values at both a local and
global level. This survey discusses the main volumetric approxi-
mation schemes for both 3D shapes and d-dimensional data, and
provides a unified discussion on the integration of surface-based
and volume-based shape information. Then, it describes the
application of shape-based and volumetric techniques to shape
modeling through volumetric parameterization and polycube
splines; feature-driven approximation through kernels and radial
basis functions. We also discuss the Hamilton’s Ricci flow, which
is a powerful tool to compute the conformal shape structure and to
design Riemannian metrics of manifolds by prescribed curvatures.
We conclude the presentation by discussing applications to shape
analysis and medicine.

Keywords: Riemannian surface and metric; Ricci flow; con-
formal structure; Laplace-Beltrami operator; heat diffusion
equation; implicit approximation; volume parameterization; shape
modeling; medicine

1 Course description

Shape modeling typically handles a 3D shape as a two-dimensional
surface, which describes the shape boundary and is represented as
a triangular mesh or a point cloud. However, in several applica-
tions a volumetric representation is more suited to handle the com-
plexity of the input shape. For instance, volumetric representa-
tions accurately model the behavior of non-rigid deformations and
volume constraints are imposed to avoid deformation artifacts. In
shape matching, volumetric descriptors, such as Laplacian eigen-
functions, heat kernels, and diffusion distances, are defined starting
from their surface-based counterparts.

In the aforementioned applications, the underlying problem re-
quires the prolongation of the surface-based information, which is
typically represented as a shape-driven map, to the interior of the
input shape or, more generally, to the surrounding volume. Extend-
ing a surface-based scalar function to a volumetric map is a difficult
problem since it typically relies on the integration of shape-based
and volumetric information, together with smoothness conditions,
interpolating constraints, preservation of features at both a local
and global level. Besides the underlying complexity and degrees of
freedom in the definition of volumetric approximations of surface-
based maps, volumetric approximations (e.g., the extension of a
surface-based scalar function to a volume-based approximation) are
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essential to address a wide range of problems. For instance, vol-
umetric Laplacian eigenfunctions are suited to define volumetric
descriptors, which are consistent with their surface-based counter-
parts. In a similar way, harmonic volumetric functions have been
applied to volumetric parameterization and to the definition of poly-
cube splines.

This survey discusses the main volumetric approximation schemes
for both 3D shapes and d-dimensional data, and provides a unified
discussion on the integration of surface-based and volume-based
shape information. It also describes the application of shape-based
and volumetric techniques to shape processing with volumetric pa-
rameterization and to the feature-driven approximation with mov-
ing least-squares techniques and radial basis functions. While pre-
vious work has addressed the processing and analysis of 3D shapes
through methods that exploit either their surface-based or volumet-
ric representations, this survey presents a unified overview on these
works through volumetric approximations of surface-based scalar
functions. This unified scheme also provides a basis for generaliz-
ing those methods that have been primarily defined on surfaces but
are open to and benefit of the integration with volumetric informa-
tion. Furthermore, it systematically presents the theory, algorithm,
and applications of discrete Ricci flow. In the following, we provide
a detailed description of the main parts of our contribution.

Part I � Introduction

We present the outline and the main aims of this course on spectral
surface-based and volume-based techniques, and discrete curvature
flow methods for shape modeling and analysis.

Part II � Differential operators and spaces for
shape modeling

We start with an introduction to the spectral surface-based and
volume-based techniques, and discrete curvature flow methods for
shape modeling, together with a presentation of the background un-
derlying the main spectral and curvature flow techniques for shape
modeling. Key concepts from smooth geometry, such as Rieman-
nian metric, Gaussian curvature, Laplace-Beltrami operator, heat
diffusion equation, and Ricci flow are systematically introduced.
We also present the main results on the convergence and the unique-
ness of the solution to Ricci flow and the geometric approximation
theorem. Starting from this background on the main differential
properties of manifolds, we define and discuss the properties of the
harmonic maps, the Laplacian eigenfunctions, and the solutions to
the heat equation.

Part III � From surface-based to volume-based
shape modeling

Using the concepts introduced in Part II, we address the volumetric
approximation problem. After an overview on the aims of the vol-
umetric approximation in the context of shape modeling and anal-
ysis, we classify the main approaches proposed by previous work
and detail the following approximation schemes: (i) linear preci-
sion methods through generalized barycentric coordinates; (ii) im-



plicit methods with radial basis functions; (iii) surface-based and
cross-volume parameterization; (iv) polycube splines; (v) moving
least squares techniques. More precisely, we introduce the com-
putation of the inter-surface harmonic map, extend it to volumetric
harmonic map, and construct the polycube shape parameterization
and splines. Then, we discuss volumetric approximations through
radial basis function with constraints on the approximation error
and the preservation of the critical points.

Part IV � Applications & Conclusions

Once the continuous and discrete settings have been introduced, we
focus on the main applications of the volumetric approximation to
shape modeling and medicine. In the context of shape modeling,
we outline how the Laplacian eigenvectors of a given surface are
extended into the shape interior, thus providing the basis for the
definition of shape-aware barycentric coordinates and of volumet-
ric descriptors, such as the volumetric global point signature, bihar-
monic and diffusion embeddings, which have been primarily de-
fined for the surface setting. We also present template-based shape
descriptors and the computation of harmonic volumetric mappings
between solid objects with the same topology for volumetric pa-
rameterization, solid texture mapping, and hexahedral remeshing.
In the context of medicine, we discuss applications to respiratory
motion modeling, medical and forensic skull modeling and facial
reconstruction. Finally, we conclude the course with a discussion
of open problems and future perspectives, also addressing questions
and answers with all presenters.

2 Schedule

Part I � Introduction (10 minutes)

1. Outline and motivations (10 minutes: D. Gu, G. Patan`e)

Part II � Differential operators and spaces for
shape modeling (80 minutes)

1. Mappings on Riemann surfaces (20 minutes: D. Gu)

• Riemannian metric, isothermal coordinates

• Holomorphic differentials

• Quasi-conformal mapping and Beltrami equation

2. Ricci flow (30 minutes: D. Gu)

• Yamabe equation and convergence theorem of Ricci
flow

• Discrete Ricci flow, convergence, uniqueness

• Discrete conformal mapping and metric deformation

3. Laplacian operator and spectral processing (30 minutes: G.

Patan`e)

• Laplace-Beltrami operator on 3D shapes

• Harmonic equation, Laplacian eigenproblem, and heat
diffusion equation

• Spectral distances and kernels: commute-time, bi-
harmonic, and diffusion distances

Part III � From surface-based to volume-based
shape modeling (70 minutes)

1. The volumetric approximation problem (5 minutes: G.

Patan`e)

• Definition

• Aims and motivations

2. Main approaches (25 minutes: G. Patan`e)

• Linear precision methods and generalized barycentric
coordinates

• Function approximation with radial basis functions

• Moving least-squares approximation

[Break (15 minutes)]

3. From cross-surface to cross-volume mapping (40 minutes: X.

Li)

• Cross-surface and cross-volume mapping

• Volumetric harmonic mapping

• Polycube parameterization

Part IV � Applications & Conclusions (50 minutes)

1. Applications to shape modeling and analysis (20 minutes: D.

Gu, G. Patan`e)

• Surface-based and volume-based descriptors for shape
correspondence and comparison

• Volume preserving mappings between surfaces and im-
age restoration

2. Applications to medicine (20 minutes: D. Gu, X. Li)

• Motion modeling for radiotherapy planning

• Skull and facial modeling and restoration

• Conformal brain mapping and brain cortex analysis

• Virtual colonoscopy

3. Conclusions, Questions & Answers (10 minutes: G. Patan`e,

X. Li, D. Gu)

3 Targeted audience and background

Intended audience The target audience of this tutorial includes
graduate students and researchers interested in Riemannian geome-
try, spectral geometry processing, and implicit modeling. Our goals
are threefold: (i) to show the possibility of integrating shape-based
and volume-based information; (ii) to introduce and discuss the
fundamental results and its applications that are relevant to shape
modeling and, more generally, computer graphics; (iii) to identify
open problems and future work. The main topics cover volumet-
ric parameterization and polycube splines; implicit modeling with
radial basis functions and kernel methods; spectral shape analysis
through descriptors and distances; discrete Ricci flow; applications
to medicine. Several topics are of interest for a wider audience;
among them, we mention shape correspondence, descriptors and
comparison; shape driven scalar functions for shape and volume
analysis.



Prerequisites Knowledge about differential geometry, mesh
processing, function approximation.

Level of difficulty: Advanced course.

4 Course Rationale

Tutorial originality While previous tutorials have addressed the
processing and analysis of 3D shapes through methods that ex-
ploit either their surface-based or volumetric representations, we
will present a unified overview on these works through volumet-
ric approximations of surface-based scalar functions. This unified
scheme will also provide a basis for generalizing those methods that
have been primarily defined on surfaces but are open to and benefit
of the integration with volumetric information. Furthermore, it is
the first tutorial that systematically presents the theory, algorithm,
and applications of discrete Ricci flow. In the following, we provide
a list of previous work on the topics that is related to this tutorial.

Related tutorials organized by the lecturers

(T1) SIGGRAPH Asia 2013 Course “Surface-Based and Volume-

Based Techniques for Shape Modeling and Analysis” (G.
Patanè, X.S. Li, X.D. Gu);

(T2) Shape Modeling International’2012 Tutorial “Spectral, Cur-

vature Flow Surface-Based and Volume-Based Techniques for

Shape Modeling and Analysis” (G. Patanè, X.D. Gu, X.S. Li,
M. Spagnuolo);

(T3) Eurographics’2007 Tutorial “3D shape description and

matching based on properties of real functions” (S. Biasotti,
B. Falcidieno, P. Frosini, D. Giorgi, C. Landi, S. Marini, G.
Patanè, M. Spagnuolo);

(T4) ICIAM’2007 Mini-Symposium “Geometric-Topological

Methods for 3D Shape Classification and Matching” (M.
Spagnuolo, G. Patanè);

(T5) SMI’2008 Mini-Symposium on “Shape Understanding via

Spectral Analysis Techniques” (B. Levy, R. Zhang, M. Retuer,
G. Patanè, M. Spagnuolo).

This course proposal revises and extends our T1 SIGGRAPH Asia
2013 Course “Surface-Based and Volume-Based Techniques for

Shape Modeling and Analysis”. According to recent results of the
authors and the feedback to the previous course, additional mate-
rial on (i) spectrum-free computation of the heat kernel and diffu-
sion distances; (ii) applications to medicine have been included in
the notes and slides of this new course proposal. Tutorial T2 ad-
dressed the main volumetric approximation schemes for both 3D
shapes and n-dimensional data, and provides a unified discussion
on the integration of surface-based and volume-based shape infor-
mation. Tutorials T3 and T4 covered a variety of methods for 3D
shape matching and retrieval, which are characterized by the use of
a real-valued function defined on the shape to derive its signature.
Tutorial T5 addressed spectral analysis for shape understanding and
several applications, which include surface parameterization, defor-
mation, compression, and non-rigid shape retrieval.

Related tutorials

(T6) SIGGRAPH’2013 Course “Geometry Processing with Dis-

crete Exterior Calculus ” (F. de Goes, K. Crane, M. Desbrun,
P. Schroeder);

(T7) SIGGRAPH Asia’2010 “Spectral Geometry Processing” (B.
Levy, R. H. Zhang);

(T8) Eurographics’2010 State if the Art Reports “A Survey on

Shape Correspondence (O. van Kaick, R. H. Zhang, G.
Hamarneh, D. Cohen-Or).

Course T6 focused on the discrete exterior calculus and its relation
with digital geometry processing and discrete differential geometry.
Tutorial T7 presented the main concepts behind spectral mesh pro-
cessing on 3D shapes and its applications to filtering, shape match-
ing, remeshing, segmentation, and parameterization. Tutorial T8
reviewed the main methods for the computation of the correspon-
dences between geometric shapes.
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An Introduction to Ricci Flow and Volumetric Approximation

with Applications to Shape Modeling

Giuseppe Patané⇤ David Xianfeng Gu† Xin Shane Li‡

Abstract

Extending a shape-driven map to the interior of the input shape and to the surrounding volume is a difficult problem since
it typically relies on the integration of shape-based and volumetric information, together with smoothness conditions, interpo-
lating constraints, preservation of feature values at both a local and global level. This survey discusses the main volumetric
approximation schemes for both 3D shapes and d-dimensional data, and provides a unified discussion on the integration of
surface-based and volumetric shape information. Then, it describes the application of surface-based and volumetric techniques
to shape modeling through volumetric parameterization and polycube splines; feature-driven approximation through kernels
and radial basis functions. We also discuss the Hamilton’s Ricci flow, which is a powerful tool to compute the conformal shape
structure and to design Riemannian metrics of manifolds by prescribed curvatures. We conclude the presentation by discussing
applications to shape analysis and medicine.

Keywords: Riemannian surface and metric; Ricci flow; conformal structure; Laplace-Beltrami operator; heat diffusion equation;
implicit approximation; volume parameterization; shape modeling; medicine

1 Introduction

Shape modeling typically handles a 3D shape as a two-dimensional surface, which describes the shape boundary and is rep-
resented as a triangular mesh or a point cloud. However, in several applications a volumetric representation is more suited to
handle the complexity of the input shape. For instance, volumetric representations accurately model the behavior of non-rigid
deformations and volume constraints are imposed to avoid deformation artifacts. In shape matching, volumetric descriptors,
such as Laplacian eigenfunctions, heat kernels, and diffusion distances, are defined starting from their surface-based counter-
parts.

In the aforementioned applications, the underlying problem requires the prolongation of the surface-based information, which
is typically represented as a shape-driven map, to the interior of the input shape or, more generally, to the surrounding volume.
Extending a surface-based scalar function to a volumetric map is a difficult problem since it typically relies on the integration
of shape-based and volumetric information, together with smoothness conditions, interpolating constraints, preservation of fea-
tures at both a local and global level. Besides the underlying complexity and degrees of freedom in the definition of volumetric
approximations of surface-based maps, volumetric approximations (e.g., the extension of a surface-based scalar function to a
volume-based approximation) are essential to address a wide range of problems. For instance, volumetric Laplacian eigenfunc-
tions are suited to define volumetric descriptors, which are consistent with their surface-based counterparts. In a similar way,
harmonic volumetric functions have been applied to volumetric parameterization and to the definition of polycube splines.

This survey discusses the main volumetric approximation schemes for both 3D shapes and d-dimensional data, and provides a
unified discussion on the integration of surface-based and volumetric information. It also describes the application of shape-
based and volumetric techniques to shape processing with volumetric parameterization and to the feature-driven approximation
with moving least-squares techniques and radial basis functions. While previous work has addressed the processing and analysis
of 3D shapes through methods that exploit either their surface-based or volumetric representations, this survey presents a
unified overview on these works through volumetric approximations of surface-based scalar functions. This unified scheme
also provides a basis for generalizing those methods that have been primarily defined on surfaces but are open to and benefit of
the integration with volumetric information. Furthermore, it systematically presents the theory, algorithm, and applications of
discrete Ricci flow. In the following, we provide a detailed description of the main parts of our contribution.

⇤Consiglio Nazionale delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche, Genova, Italy, patane@ge.imati.cnr.it
†State University of New York at Stony Brook, Department of Computer Science, New York, USA, gu@cs.sunysb.edu
‡Louisiana State University, School of Electrical Engineering & Computer Science, USA, xinli@cct.lsu.edu
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Figure 1: (a) Riemann surface. All transitions fab are biholomorphic. (b) Beltrami coefficient.

Outline and contribution We start with an introduction to the spectral surface-based and volumetric techniques, and
discrete curvature flow methods for shape modeling, together with a presentation of the background underlying the main
spectral and curvature flow techniques for shape modeling (Sect. 2). Key concepts from smooth geometry, such as Riemannian
metric, Gaussian curvature, Laplace-Beltrami operator, heat diffusion equation, and Ricci flow are systematically introduced
(Sect. 3). We also present the main results on the convergence and the uniqueness of the solution to Ricci flow and the geometric
approximation theorem. Starting from this background on the main differential properties of manifolds, we define and discuss
the properties of the harmonic maps, the Laplacian eigenfunctions, and the solutions to the heat equation.

After an overview on the aims of the volumetric approximation in the context of shape modeling and analysis, we classify
the main approaches proposed by previous work and detail the following approximation schemes (Sect. 4): (i) linear precision
methods through generalized barycentric coordinates; (ii) implicit methods with radial basis functions; (iii) surface-based and
cross-volume parameterization; (iv) polycube splines; (v) moving least squares techniques; (vi) and topology-driven approx-
imation. More precisely, we introduce the computation of the inter-surface harmonic map, extend it to volumetric harmonic
map, and construct the polycube shape parameterization and splines. Then, we discuss volumetric approximations through
radial basis function with constraints on the approximation error and the preservation of the critical points.

Once the continuous and discrete settings have been introduced, we focus on the main applications of the volumetric approxi-
mation to shape modeling and medicine (Sect. 5). In the context of shape modeling, we outline how the Laplacian eigenvectors
of a given surface are extended into the shape interior, thus providing the basis for the definition of shape-aware barycentric
coordinates and of volumetric descriptors, such as the volumetric global point signature, biharmonic and diffusion embed-
dings, which have been primarily defined for the surface setting. We also present template-based shape descriptors and the
computation of harmonic volumetric mappings between solid objects with the same topology for volumetric parameterization,
solid texture mapping, and hexahedral remeshing. In the context of medicine, we discuss applications to respiratory motion
modeling, medical and forensic skull modeling and facial reconstruction. Finally (Sect. 6), we conclude the presentation by
discussing open problems and future perspectives.

2 Riemann surfaces and Ricci flow

Firstly, we introduce mappings on Riemann surfaces, and quasi-conformal mapping and Teichmuller spaces (Sect.2.1). Then,
we discuss the surface Ricci flow and its discretization (Sect. 2.2).

2.1 Mappings on Riemann Surfaces

Suppose N be a differential manifold of dimension n. A Riemannian metric on N is a family of inner products gp : TpN ⇥
TpN ! R, p 2 N , such that, for all differentiable vector fields X ,Y on N , p ! gp(X(p),Y (p)) defines a smooth surface
N ! R. Selecting a set of local coordinates (x1,x2, · · · ,xn), the metric tensor can be written as g = Âi, j gi jdxidx j. Considering
the differential map f : (M ,g)! (N ,h) between two Riemannian manifolds, the pull back metric on M induced by f is
given by f ⇤h = JT hJ, where J = ( ∂yi

∂x j ) is the Jacobian matrix of f . Surfaces are examples of 2 dimensional manifolds.



Figure 2: Holomorphic 1-form basis on a genus two surface.

Suppose N is an orientable surface embedded in E3 and g the induced Euclidean metric; let (x,y) be the local parameters of
the metric surface (N ,g). If the Riemannian metric has the local representation g = e2l (x,y)(dx2 +dy2), then (x,y) is called
isothermal coordinates of the surface. In particular, l : N ! R is called the conformal factor. The following theorem shows
the existence of isothermal coordinates [Chern 1955].

Theorem 2.1 Suppose (N ,g) is a smooth oriented metric surface, then for each point p there exists a neighborhood U(p) of p
such that local coordinates exist on U(p).

Through the isothermal coordinates, we introduce the Gaussian coordinates as follows. Let (N ,g) be an oriented surface with
a Riemannian metric and (u,v) an isothermal coordinates. Then, the Gaussian curvature of the surface is given by

K(u,v) =�Dgl , Dg = e�2l (u,v)
✓

∂ 2

∂u2 +
∂ 2

∂v2

◆
,

where Dg is the Laplace-Beltrami operator induced by g. The Gauss curvature is intrinsic to the Riemannian metric and the
total curvature is a topological invariant. According to the Gauss-Bonnet theorem [Schoen and Yau 1994; DoCarmo 1976], the
total Gaussian curvature is given by Z

N
KdA+

Z

∂N
kgds = 2pc(N ),

where c(N ) is the Euler number of the surface, kg is the geodesic curvature on the boundary, and ∂N is the boundary of the
surface.

Holomorphic Differentials We now introduce holomorphic 1-forms on Reimannian surfaces. Suppose f : Ĉ! Ĉ be a complex
function, where Ĉ= C[{•} is the extended complex plane. Defining the complex differential operators,

∂
∂ z

=
1
2

✓
∂
∂x

� i
∂
∂y

◆
,

∂
∂ z̄

=
1
2

✓
∂
∂x

+ i
∂
∂y

◆
,

the function f is called holomorphic if ∂ f
∂ z̄ = 0 everywhere. If f is invertible and f�1 is also holomorphic, then f is called bi-

holomorphic. If f is treated as a mapping between complex planes, then holomorphic functions are angle-preserving, namely,
conformal.

Suppose N is a topological surface, with an atlas {(Uk,fk)}, where fk : Uk ! C is a local complex coordinate chart. If all the
local coordinate transitions (Fig. 1(a))

fi j = f j �f�1
i : fi(Ui \Uj)! f j(Ui \Uj),

are bi-holomorphic, then the atlas is called a conformal atlas and the surface N is called a Riemann surface. We recall that all
oriented metric surfaces are Riemann surfaces.

Suppose (N ,g) is an oriented surface with a Riemannian metric, the atlas formed by local isothermal coordinate charts is a
conformal structure. Hence, all oriented metric surfaces are Riemann surfaces, their Riemannian metrics induce conformal
structures. A holomorphic 1-form on a Riemann surface N is an assignment of a function fi(zi) on each chart zi such that
if z j is another local coordinate, then fi(zi) = f j(z j)

⇣
dz j
dzi

⌘
. All holomorphic 1-forms form a group with 2g real dimension,

denoted as W(N ), where g is the genus of N . Fig. 2 shows the basis of holomorphic 1-forms on a genus two surface. A
holomorphic 1-form can be decomposed to two real harmonic 1-forms. According to Hodge theory [Schoen and Yau 1997],



(a) (b)

Figure 3: (a) Conformal mapping versus (b) quasi-conformal mapping.

each cohomological class of the surface has a unique harmonic 1-form. This property leads to the computational algorithm
described in [Jin et al. 2004].

Quasi-conformal mapping and Beltrami equation Suppose (Nk,gk), k = 1,2, are orientable surfaces with Riemannian met-
rics. A diffeomorphism f : (N1,g1) ! (N2,g2) is conformal, if the pull back metric f ⇤g2 induced by f differs the original
metric g1 by a scalar function f ⇤g2 = e2l g1, where e2l is the conformal factor. Geometrically, a conformal mapping is angle-
preserving and maps infinitesimal circles on the source to infinitesimal circles on the target. In contrast, general diffeomor-
phisms transforms infinitesimal circles to infinitesimal ellipses. Fig. 3 illustrates a conformal mapping and a quasiconformal
mapping for a human face surface.

A generalization of conformal maps is the quasi-conformal maps, which are orientation preserving homeomorphisms between
Riemann surfaces with bounded conformality distortion, in the sense that their first order approximations takes small circles to
small ellipses of bounded eccentricity. Mathematically, f : C!C is quasiconformal such that it satisfies the Beltrami equation

∂ f
∂ z̄

= µ(z)∂ f
∂ z

, (1)

for some complex-valued function µ satisfying kµk• < 1. The term µ is called the Beltrami coefficient, which is a measure
of non-conformality. It measures how far the map at each point is deviated from a conformal map. In particular, the map f is
conformal around a small neighborhood of p when µ(p) = 0. Conventional Riemann mapping theorem can be generalized to
quasi-conformal mappings.

Theorem 2.2 (Measurable Riemann Mapping) Let f : Ĉ! Ĉ, further more f fixes three points {0,1,•}. Suppose µ : Ĉ! R
be a measurable function, kµk• < 1, then the solution to the Beltrami equation (1) uniquely exists.

Computational algorithms for solving Beltrami equation can be found in [Zeng et al. 2009b]. As shown in Fig. 1(b), the
orientation of the ellipse is the double of the argument of µ , the dilation of the map is defined as the ratio between the major
axis and the minor axis of the infinitesimal ellipse. The maximal dilation of f is given by

Kf =
1+kµk•
1�kµk•

.

A homeomorphism whose dilation is less than K is called a K-quasiconformal mapping. Let µ,s , and t be the Beltrami
coefficients of quasiconformal maps f µ , f s , and f t with f t = f s � ( f µ)�1, then

t =

✓
s �µ
1� µ̄s

1
q

◆
� ( f µ)�1,

where p = ∂
∂ z f µ(z) and q = p̄/p. For diffeomorphisms between Riemann surfaces, the concept of Beltrami coefficient needs

to be replaced by Beltrami differential with local representation µ dz̄
dz .

The space of all Beltrami differential on a Riemann surface N is denoted as B(N ). The space of Beltrami differential B(N ) is
one representation of the mapping spaces between two Riemann surfaces. Given two Beltrami differentials µ and n , kµk• < 1,
knk• < 1, denote their respective normalized Beltrami equation solutions as f µ : S ! N1 and f n : N ! N2. Then, the
differentials are called globally equivalent if N1 =N2, and the identity map of N2 is homotopic to f n �( f µ)�1 via a homotopy
consisting of quasiconformal homeomorphisms. The Beltrami differentials globally equivalent to zero are called global trivial
differentials and denoted as N(N ) := {µ 2 B(N )|µ ⇠ 0}.



Figure 4: Surface uniformization induced by Ricci flow.

Teichmüller Space Let N be a topological surface of genus g with b boundaries, two Riemannian metrics g1 and g2 on N
are Teichmüller equivalent g1 ⇠ g2 if there exists a conformal mapping f : (N ,g1)! (N ,g2). Furthermore, f is homotopic
to the identity map. The Teichmüller space T g,b is formed by the equivalence classes of Riemannian metrics,

T g,b := {all Riemannian metrics on N }/⇠ .

Equivalently, all Riemann surfaces of genus g with b boundaries can be classified by conformal equivalence. Two Riemann
surfaces are conformally equivalent if there exists a conformal mapping between them. All conformal equivalence classes
form the Moduli Space. The universal covering space of the Moduli space is the Teichmüller space. Holomorphic quadratic
differentials Q(N ) can be treated as the tangent space of Teichmüller space.

Suppose µ is a Beltrami differential on a Riemann surface N , on each local chart zi of N , µ has the local representation µi,
then the solution to the Beltrami equation ∂z̄zi = µi∂zzi exists. Then, the collection of local charts {zi} form another conformal
structure of N . Namely, µ deforms the Riemann surface (N ,{zi}) to another (N ,{zi}). If µ1 and µ2 differ by a global trivial
Beltrami differential, then they deform N to the same Riemann surface. Therefore, the Teichmüller space can be represented
as the quotient space T (N ) = B(N )/N(N ). Teichmüller space is a Riemannian manifold and the Riemannian metric is given
by the Teichmüller map. The computational algorithm for finding the Teichmüller coordinates for a given surface is explained
in [Jin et al. 2009b].

2.2 Surface Ricci flow

Suppose ḡ = e2l g is a conformal metric on the surface, then Gaussian curvatures induced by g and ḡ are K and K̄ respec-
tively, then the so-called Yamabe equation is given by K̄ = e�2l (�Dgl +K); similarly, the geodesic curvatures are given by
k̄g = e�l (�∂nl + kg). Yamabe equations are highly non-linear. Hamiton’s Ricci flow is able to solve them. Suppose the metric
tensor is g = (gi j). Hamilton [Hamilton 1988] introduced surface Ricci flow

dgi j

dt
= (r �2K)gi j, (2)

where r is the mean value of the scalar curvature r = 4pc(M)
A(0) . The term A(0) is the total area of M at time t = 0. During the

flow, the Gauss curvature will evolve according to a heat diffusion process

∂K(t)
∂ t

= Dg(t)K(t)+K(t)(2K(t)�r).

Therefore, the curvature evolves according to a non-linear heat diffusion process. Hamilton and Chow proved that surface Ricci
flow converges to the constant curvature metric.

Theorem 2.3 ([Hamilton 1988]) Let (M 2,g0) be compact. If r  0, or if R(0)� 0 on all of M 2, then the solution to (2)
exists for all t � 0 and converges to a metric of constant curvature.

Theorem 2.4 ([Chow 1991]) If g0 is any metric on S 2, then its evolution under (2) develops positive scalar curvature in finite
time, and hence by Theorem 2.3 converges to the round metric as t goes to •.



This property gives another approach to proving the Poincaré uniformization theorem.

Theorem 2.5 (Uniformization) All closed surfaces can be conformally deformed to one of the three canonical spaces, the unit
sphere S2, the plane E2, or the hyperbolic space H2.

Ricci flow induces the conformal mappings for general surfaces, as shown in Fig. 4. Surfaces with boundaries are conformally
deformed to constant curvature surfaces with circular holes.

Discrete Surface Ricci Flow Discrete surface Ricci flow algorithm has been introduced in [Jin et al. 2008; Yang et al. 2009] and
applied for shape analysis in [Zeng et al. 2010b], surface registration [Wang et al. 2007; Zeng et al. 2008], computational topol-
ogy [Zeng et al. 2009a], geometric modeling [Gu et al. 2007], image processing [Lui et al. 2010], virtual colonoscopy [Zeng
et al. 2010a], and many other applications. In engineering fields, smooth surfaces are often approximated by simplicial com-
plexes (triangle meshes). For more details on applications, we refer the reader to Sect. 5.2.

Major concepts, such as metrics, curvature, and conformal deformation in the continuous setting, can be generalized to the
discrete setting. To this end, we denote a triangle mesh as M , a vertex set as P , an edge set as E , and a face set as F . The
edge connecting vertices pi and p j is indicated as ei j, and fi jk denotes the face formed by pi, p j, and pk. Each triangle face can
be assumed to be Euclidean E2, spherical S2 or hyperbolic H2, and the edge lengths and angles satisfy Euclidean, spherical or
hyperbolic cosine laws, 8

>><

>>:

cos li =
cosqi+cosq j cosqk

sinq j sinqk
S2

cosh li =
coshqi+coshq j coshqk

sinhq j sinhqk
H2

1 =
cosqi+cosq j cosqk

sinq j sinqk
E2.

We say the mesh is with Euclidean, spherical, or hyperbolic background metric. In the following discussion, we will explicitly
specify the background geometry for a mesh when it is needed. Otherwise, the concept or the algorithm is appropriate for all
kinds of the background geometries.

A Riemannian metric on a mesh M is a piecewise constant metric with cone singularities. A metric on a mesh with Euclidean
background geometry is a Euclidean metric with cone singularities. Each vertex is a cone singularity. Similarly, a metric on
a mesh with spherical background geometry is a spherical metric with cone singularities; a metric on a mesh with hyperbolic
background geometry is a hyperbolic metric with cone singularities. The edge lengths of a mesh M are sufficient to define this
Riemannian metric l : E ! R+ as long as, for each face fi jk, the edge lengths satisfy the triangle inequality: li j + l jk > lki. The
discrete Gaussian curvature Ki on a vertex pi 2 s is computed from the angle deficit,

Ki =

(
2p �Â[pi,p j ,pk]2M q jk

i , pi 62 ∂M

p �Â[pi,p j ,pk]2M q jk
i , pi 2 ∂M

where q jk
i represents the corner angle attached to vertex pi in the face [pi,p j,pk], and ∂M represents the boundary of the mesh.

The discrete Gaussian curvatures are determined by the discrete metrics.

The Gauss-Bonnet theorem states that the total curvature is a topological invariant and it still holds on meshes as follows

Â
pi2P

Ki +l Â
fi2F

Ai = 2pc(M), (3)

where Ai denotes the area of face fi, and l represents the constant curvature for the background geometry; +1 for the spher-
ical geometry, 0 for the Euclidean geometry, and �1 for the hyperbolic geometry. Conformal metric deformations preserve
infinitesimal circles and the intersection angles among them. The discrete conformal metric deformation of metrics uses circles
with finite radii to approximate the infinitesimal circles.

The concept of the circle packing metric was introduced by Thurston in [Thurston 1980]. Let G be a function defined on the
vertices, G : P ! R+, which assigns a radius gi to the vertex pi. Similarly, let F be a function defined on the edges, F : E !
[0, f

2 ], which assigns an acute angle fi j to each edge ei j and is called a weight function on the edges. The pair of vertex radius
function and edge weight function on a mesh M , (G,F), is called a circle packing metric of M . Fig. 3 illustrates the circle
packing metrics. Each vertex pi has a circle whose radius is gi. For each edge ei j, the intersection angle fi j is defined by the
two circles of pi and p j, which either intersect or are tangent. The edge length is given by l2

i j = g2
i + g2

j +2cosfi jgig j.

Two circle packing metrics (G1,F1) and (G2,F2) on the same mesh are conformally equivalent if F1 ⌘ F2. A conformal
deformation of a circle packing metric only modifies the vertex radii and preserves the intersection angles on the edges. There



are different ways to define discrete conformal metric deformation. Details can be found in [Gu and Yau 2007] and [Luo et al.
2007].

Admissible Curvature Space A mesh M with edge weight F is called a weighted mesh, which is denoted as (M ,F). In the
following, we want to clarify the spaces of all possible circle packing metrics and all possible curvatures of a weighted mesh.
Let the vertex set be P = {p1,p2, . . . ,pn}, and the radii be G = {g1,g2, . . . ,gn}. Let ui be

ui =

8
<

:

loggi E2

log tanh gi
2 H2

log tan gi
2 S2

where E2, H2, and S2 indicate the background geometry of the mesh. We represent a circle packing metric on (M ,F)
by a vector u = (u1,u2, . . . ,un)T . Similarly, we represent the Gaussian curvatures at mesh vertices by the curvature vec-
tor k(K1,K2, . . . ,Kn)T . All the possible u form the admissible metric space, and all the possible ks form the admissible
curvature space.

According to the Gauss-Bonnet theory (c.f., Eq. (3)), the total curvature must be 2pc(M ), and therefore the curvature space
is n�1 dimensional. We add one linear constraint to the metric vector u, M ui = 0, for the normalized metric. As a result, the
metric space is also n�1 dimensional. If all the intersection angles are acute, then the edge lengths induced by a circle packing
satisfy the triangle inequality. There is no further constraint on u. Therefore, the admissible metric space is simply Rn�1. A
curvature vector k is admissible if there exists a metric vector u, which induces k. The admissible curvature space of a weighted
mesh (M ,F) is a convex polytope, specified by the following theorem. The detailed proof can be found in [Chow and Luo
2003].

Theorem 2.6 Suppose (M ,F) is a weighted mesh with Euclidean background geometry, I is a proper subset of vertices, FI is
the set of faces whose vertices are in I, and the link set Lk(I) = {(e,v)|e\ I = /0,v 2 I} is formed by faces (e,v), where e is an
edge and v is the third vertex in the face. Then, a curvature vector k is admissible if and only if

Â
pi2I

Ki >� Â
(e,v)2Lk(I)

(p �f(e))+2f c(F1).

The admissible curvature spaces for weighted meshes with hyperbolic or spherical background geometries are more compli-
cated. We refer readers to [Luo et al. 2007] for detailed discussions.

Discrete Surface Ricci Flow Suppose (M ,F) is a weighted mesh with an initial circle packing metric. The discrete Ricci flow
is defined as

dui(t)
dt

= (K̄ �Ki), (4)

where k̄ = (K̄1, K̄2, . . . , K̄n)T is the user defined target curvature. Discrete Ricci flow is in the exact same form as the smooth
Ricci flow, which deforms the circle packing metric according to the Gaussian curvature, as in Eq. (4). Discrete Ricci flow
can be formulated in the variational setting, namely, it is a negative gradient flow of a special energy form. Let (M ,F) be
a weighted mesh with spherical (Euclidean or hyperbolic) background geometry. For two arbitrary vertices pi and p j, the
following symmetric relation holds ∂Ki

∂u j
=

∂Kj
∂ui

.

Let w = Ân
i=1 Kidui be a differential one-form. The symmetric relation guarantees that the one-form is closed (curl free) in the

metric space; i.e.,

dw = Â
i j

✓
∂Ki

∂u j
�

∂Kj

∂ui

◆
dui ^du j = 0.

By Stokes theorem, the following integration is path independent,

f (u) =
Z u

u0
Â
i=1

n(K̄i �Ki)dui, (5)

where u0 is an arbitrary initial metric. Therefore, the above integration is well defined, so called the discrete Ricci energy.
The discrete Ricci flow is the negative gradient flow of the discrete Ricci energy. The discrete metric which induces k̄ is the
minimizer of the energy.

Computing the desired metric with user-defined curvature k̄ is equivalent to minimizing the discrete Ricci energy. For the
Euclidean (or hyperbolic) case, the discrete Ricci energy (c.f., Eq. (5)) has been proven to be strictly convex (namely, its



Hessian is positive definite) in [Chow and Luo 2003]. The global minimum uniquely exists, corresponding to the metric ū,
which induces k̄. The discrete Ricci flow converges to this global minimum.

Theorem 2.7 (Euclidean and hyperbolic Ricci energy) The Ricci energy satisfies the following properties.

• The Euclidean Ricci energy f (u) on the space of the normalized metric Âui = 0 is strictly convex.

• The hyperbolic Ricci energy is strictly convex.

Although the spherical Ricci energy is not strictly convex, the desired metric u is still a critical point of the energy. Finally, the
solution can be reached using Newton’s method.

Harmonic maps on manifolds Let (M ,s(z)dzdz̄) and (N ,r(w)dwdw̄) be metric surfaces, where z and w refer to the lo-
cal isothermal coordinates, s(z) and r(w) are conformal factors. For a Lipschitz map f : (M ,s |dz|2) ! (M ,r|dw|2), the
harmonic energy density of f is defined as

w( f ;s ,r) = r(w(z))
s(z)

(|wz|2 + |wz̄|2).

The harmonic energy of the mapping is given by

E( f ;s ,r) : =
Z

M
w( f ;s ,r)s(z)

dz^dz̄
�2i

=
Z

M
r(w(z))(|wz|2 + |wz̄|2)dxdy,

where s(z) dz^dz̄
�2i is the area element induced by the Riemannian metric s(z)dzdz̄. From the definition, it is obvious that the

harmonic energy E( f ;s ,r) solely depends on the conformal structure {z} on the source and the Riemannian metric r(w)dwdw̄
on the target. A critical point of the harmonic energy functional is called a harmonic map. If f is harmonic, then wzz̄ +
(logr)wwzwz̄ ⌘ 0.

The pull back metric on M induced by f is given by

f ⇤r = r(wzdz+wz̄dz̄)(wzdz+wz̄dz̄).

Therefore,
f ⇤r = r(wzwz̄dz2 +(|wz|2 + |wz̄|2)dzdz̄+wz̄wzdz̄2).

Suppose f : (M ,s)! (N ,r) is a mapping, then the Hopf differential induced by f is given by

F( f ) := r(w(z))wzwz̄dz2.

The mapping f : (M ,s) ! (N ,r) is harmonic, if and only F( f ) is a holomorphic quadratic differential. The mapping is
conformal, if and only if F( f ) is zero. The following facts are important for surface harmonic maps, the detailed proofs can be
found in [Schoen and Yau 1997],

Theorem 2.8 (Rado’s theorem) Suppose f : S ! W is a harmonic map, where S is a simply connected surface with a single
boundary, W is a convex planar domain, such that the restriction of f on the boundary ∂S is a homeomorphism, then the
mapping is a diffeomorphism.

Theorem 2.9 Suppose f : S ! S2 is a harmonic map, where S is a genus zero closed surface, then it is conformal.

Theorem 2.10 Suppose f : (S,g)! (T,h) is a degree one harmonic map, where S,T are closed high genus surfaces, h induces
negative Gaussian curvature everywhere, then f is diffeomorphic.

In Sect. 3.1, we specialize harmonic maps on surfaces and discuss their discretization on 3D shapes represented as trianle
meshes. As further discussed in Sect. 5.2, harmonic functions have been applied to brain mapping [Gu et al. 2004] and shape
registration [Wang et al. 2007].

3 Differential operators and spaces for shape modeling
In the following, we introduce harmonic maps, the Laplacian eigenfunctions, and the solution to the heat diffusion equation in
the continuous (Sect. 3.1) and discrete (Sect. 3.2) case.



3.1 Laplace-Beltrami operator on 3D shapes

Three main classes of maps are associated to the Laplace-Beltrami operator D : C 2(N )! C 0(N ), where C k(N ) is the class
of functions with regularity of degree k: the harmonic maps; the Laplacian eigenfunctions; and the solutions to the heat diffusion
equation [Rosenberg 1997]. Since the Laplace-Beltrami operator is self-adjoint and semi-positive definite [Rosenberg 1997], it
admits an orthonormal eigensystem B := {(li,ji)}i, Dji = liji, li  li+1, in the space L 2(N ) of square integrale functions
defined on N .

The harmonic function h : N ! R is the solution of the Laplace equation Dh = 0 with Dirichlet boundary conditions h|S = h0,
S ⇢ N , where h0 is the initial condition. In particular, it minimizes the Dirichlet energy E :=

R
N k—h(p)k2

2dp and satisfies
the locality property; i.e., if p and q are two distinct points, then Dh(p) is not affected by the value of h at q. According to the
maximum principle [Rosenberg 1997], a harmonic function has no local extrema other than at constrained vertices. In the case
that all constrained minima are assigned the same global minimum value and all constrained maxima are assigned the same
global maximum value, all the constraints will be extrema in the resulting field. We briefly recall that the critical points of h
are defined as those points p 2 N such that —h(p) = 0 and h is Morse if the Hessian matrix of h at any critical point is not
singular [Biasotti et al. 2008; Milnor 1963]. The critical point is classified as a maximum or a minimum if the corresponding
Hessian matrix has zero or three positive eigenvalues, respectively; otherwise, it is a saddle.

The scale-based representation H : N ⇥R+ ! R of the map h : N ! R is the solution to the heat diffusion equation
⇢

∂tH(p, t) =�DH(p, t)
H(p,0) = h(p) p 2 N , t 2 R,

and it can be written through the convolution operator ? as
⇢

H(p, t) := kt(p, ·)?h =
R
N kt(p,q)h(q)dq

kt(p,q) := Â+•
i=1 exp(�lit)ji(p)ji(q)

where kt(·, ·) is the heat diffusion kernel. From the spectral decomposition of kt(·, ·) and disregarding the ordering of the
Laplacian eigenvalues, it follows that the heat diffusion and the Laplace-Beltrami operator have the same eigenfunctions {ji}+•

i=1
and (exp(�lit))n

i=1 are the corresponding eigenvalues.

3.2 Laplacian matrix and equations

Let us consider a triangle mesh M := (P,T ), which discretizes a manifold N , where P := {pi}n
i=1 is the set of n vertices

and T is the connectivity graph. Then, the piecewise linear scalar function f : M ! R is defined by linearly interpolating the
values f := ( f (pi))n

i=1 of f at the vertices using barycentric coordinates. If f (pi) 6= f (p j), for each edge (i, j), then f is called
general.

We represent the Laplace-Beltrami operator on triangle meshes and point sets in a unified way as L̃ := B�1L, where B is a
positive definite matrix and L is symmetric, positive semi-definite. On triangle meshes, the Laplacian matrix is defined as
L̃ := B�1L, where L is the Laplacian matrix with cotangent weights and B is the diagonal matrix whose entries are the areas of
the Voronoi regions of the mesh vertices (Voronoi-cot weights) [Desbrun et al. 1999], which extend the cot weights intrudeced
in [Pinkall and Polthier 1993]. Alternatively, B is the FEM mass matrix (linear FEM weights) [Reuter et al. 2006; Vallet and
Levy 2008], which measures the variation of the triangle areas. On polygonal meshes, we consider the Laplacian discretization
proposed in [Alexa and Wardetzky 2011], which provides a generalization of the Laplacian matrix with cot-weights to surface
meshes with non-planar, non-convex faces.

In [Belkin and Niyogi 2003; Belkin and Niyogi 2006; Belkin and Niyogi 2008; Liu et al. 2012], the Laplace-Beltrami op-
erator for a function f : P ! R defined on a point set P := {pi}n

i=1, is discretized as the linear operator f 7! L̃f, where
L̃ := (L(i, j))n

i, j=1 is the Laplacian matrix. In [Liu et al. 2012], the Laplacian matrix is defined as L̃ := B�1L, where L is
the Gram matrix associated to the Gaussian kernel and B is the diagonal matrix whose entries are areas of the Voronoi cells
associated to the points of P . The Voronoi cell of pi is approximated by projecting the points of a neighbor of pi on the
estimated tangent plane at pi. This discretization still converges to the Laplace-Beltrami operator of the underlying manifold,
as the sampling density increases and t tends to zero. If B := I, then this discretization, which applies a fine approximation of
the local geometry of the surface at each point through its Voronoi cell, reduces to the discretizations of the Laplace-Beltrami
operator proposed in [Belkin and Niyogi 2003; Belkin and Niyogi 2006; Belkin and Niyogi 2008; Liu et al. 2012] and that are
based on the heat diffusion kernel. In both cases, Lf converges to D f , on P , as t ! 0+.



(a) n = 152K, m = 1 (b) m = 2, M = 2 (c) m = 3, M = 3
M = 1, s = 0 s = 2 s = 4

Figure 5: Level-sets and critical points of harmonic maps with (a) two, (b) four, and (c) six Dirichlet boundary conditions,
which are shown in blue and red. Red, blue, and green points indicate the maxima, minima, and saddles of each map. The
insertion of new boundary constraints locally affects the resulting harmonic map.

Critical points Let f : M ! R be a piecewise linear and general scalar function. As a 2 R varies, the behavior of f is
conveyed by the corresponding level sets f�1(a) and the critical points of f , at which the number of connected components
of the level sets changes. The critical points of f : M ! R are computed by analyzing the distribution of the f -values on the
neighborhood of each vertex [Banchoff 1967]. Under the assumption that f is a regular map, the Euler formula gives the link
between the critical points of (M , f ), the Euler characteristic c(M ) = m� s+M of M [Banchoff 1967; Milnor 1963], and
the genus g = 1

2 (2�c(M )) of M . Here, m and M is the number of minima and maxima, respectively; the s := Âpi saddle mi
saddle points of f are counted with their multiplicity mi. The computational cost of the classification of the critical points is
O(n), where n is the number of vertices; in fact, we need to visit all the 1-stars of M and compare the f -values along their
edges.

Harmonic equation According to the Euler formula, the number of critical points of a harmonic map depends on the number
of Dirichlet boundary conditions, which determine the corresponding maxima and minima of the resulting harmonic map. In
particular, a harmonic function with exactly one maximum and one minimum has a minimal number of 2g saddle points, which
are located on the topological handles of M . Fig. 5 shows a family of harmonic functions achieved by increasing the number of
Dirichlet boundary conditions. In Fig. 5(a), we applied two boundary conditions, which identify the maximum and minimum
of f ; in (b), we added two new boundary conditions, while maintaining the previous ones. According to the locality property,
the resulting harmonic function and its level-sets remain unchanged in a neighborhood of the Dirichlet points related to the
previous step. An analogous remark applies to (b,c), where in (c) we added two constraints to the set of Dirichlet conditions
used in (b).

While the position of the extrema is determined a-priori by the Dirichlet boundary conditions, only the number of saddles and
not their locations on the input surface are determined through the Euler formula. As shown in the deformed surfaces of Fig. 6,
the harmonic functions with the same Dirichlet boundary conditions share an equal number of critical points and level-sets
of similar shape. The stability is also confirmed by the examples in Fig. 7, where the input shape has been modified by a
non-isometric deformation. This result is due to the uniqueness of the harmonic function, once we have fixed the Dirichlet
boundary conditions. Indeed, quasi-isometric changes of M and a different choice of the weights influence the local behavior
of f without affecting its global structure.

Laplacian eigenproblem In the discrete case, the eigenproblem related to the linear FEM Laplacian matrix L̃ := B�1L can
be written as Lx = lBx and the corresponding eigenvectors {xi}n

i=1 are orthonormal with respect to the scalar product h·, ·iB
induced by B; i.e., hxi,x jiB = x>i Bx j = di j, or equivalently X>BX = I, with X := [x1, . . . ,xn] the matrix of the eigenvectors. In
matrix form, the generalized eigen-decomposition is rewritten as LX = BXG, where G := diag(li)n

i=1 is the diagonal matrix of
the Laplacian eigenvalues. Lumping the mass matrix B [Vallet and Levy 2008], L̃ reduces to the normalized Laplacian matrix
D�1L. Here, D is the diagonal matrix whose entries are the areas of the Voronoi regions; i.e., D(i, i) = 1

3 Ât2N(i) |t|, i = 1, . . . ,n.

The eigenvector corresponding to the smallest non-zero eigenvalue of the Laplacian graph (i.e., the Fiedler vector) has been
used in graph theory for partitioning graphs into sub-graphs [Fiedler 1973; Mohar and Poljak 1993], which are handled in
parallel [Alpert et al. 1999]; in numerical linear algebra, for reordering sparse matrices and reducing their bandwidth [Barnard
et al. 1993]; in machine learning, for clustering [Schoelkopf and Smola 2002] (§ 14) and dimensionality reduction [Belkin



Figure 6: Common behavior of harmonic functions with the same Dirichlet boundary conditions on four deformed surfaces.
Each scalar function has 3 maxima, 5 minima, and 6 saddles.

and Niyogi 2003]; in computer graphics, for graph/mesh layout [Dı́az et al. 2002; Koren 2003] and image segmentation [Shi
and Malik 1997]. In digital geometry processing, the spectral properties of the uniform discrete Laplacian has been used to
design low-pass filters [Taubin 1995]. Successively, this formulation has been refined to include the local geometry of the
input surface [Desbrun et al. 1999; Kim and Rossignac 2005; Pinkall and Polthier 1993]. Further applications include implicit
mesh fairing [Desbrun et al. 1999; Kim and Rossignac 2005; Zhang and Fiume 2003], mesh watermarking [Ohbuchi et al.
2001; Ohbuchi et al. 2002], and geometry compression [Karni and Gotsman 2000; Sorkine et al. 2003]. Moreover, the spectral
properties of the Laplacian matrix are at the basis of the definition of fairing functionals [Kobbelt et al. 1998; Mallet 1989],
which optimize the triangles’ shape and/or the surface smoothnesss [Nealen et al. 2006].

The eigenvectors of the Laplacian matrix have been used for embedding a surface of arbitrary genus into the plane [Zhou
et al. 2004; Zigelman et al. 2002] and mapping a closed 0-genus surface into a spherical domain [Gotsman et al. 2003]. In
the frequency space, mesh segmentation [Liu and Zhang 2007; Zhang and Liu 2005], shape correspondence [Jain and Zhang
2007; Jain et al. 2007] and comparison [Jain and Zhang 2007; Reuter et al. 2006] have been successfully addressed. Mesh
Laplacian operators are also associated to a set of differential coordinates for surface deformation [Sorkine et al. 2004] and
quadrangulation with harmonic maps and Laplacian eigenfunctions [Dong et al. 2005; Dong et al. 2006; Belkin and Niyogi
2003; Ni et al. 2004]. Recent applications of the Laplacian spectrum include shape segmentation and analysis through nodal
domains [Reuter et al. 2009] and constrained smoothing of scalar functions [Patanè and Falcidieno 2009]. Finally, theoretical
results on the sensitivity of the Laplacian spectrum against geometry changes, irregular sampling density, and connectivity
variations have been presented in [Hildebrandt et al. 2006; Xu 2007]. All these works have been accompanied by several surveys
on mesh filtering [Taubin 1999]; surface coding and spectral partitioning [Karni and Gotsman 2000]; 3D shape deformation
based on differential coordinates [Sorkine 2006]; spectral methods [Zhang et al. 2007] and Laplacian eigenfunctions [Levy
2006] for mesh processing and shape analysis.

Heat diffusion equation On the space of piecewise linear scalar functions defined on M , let us consider the weighted scalar
product hf,giB := f>Bg, which is induced by the mass matrix B associated to the linear FEM discretization [Reuter et al. 2006;
Vallet and Levy 2008] of the Laplace-Beltrami operator. This scalar product is intrinsic to the surface on which the scalar
functions are defined and is adapted to the local sampling of M through the variation of the triangle areas.

For the discretization of the solution to the heat diffusion equation, we consider the linear FEM Laplacian matrix instead
of Voronoi-cot Laplacian matrix. According to [Patanè 2013b; Patanè and Falcidieno 2010], the scale-based representation
of f : M ! R is F(t) := (F(pi, t))n

i=1 = Ân
i=1 exp(�lit)hf,xiiBxi, which is re-written in matrix form as F(t) = Kt f, where

Kt := XDtX>B, and Dt := diag(exp(�lit))n
i=1 is the weighted linear FEM (wFEM) heat kernel matrix. Lumping the mass

matrix B, we get the diagonal matrix whose entries are the areas of the Voronoi regions of M , and Kt becomes equal to the
Voronoi-cot (or lumped FEM) heat kernel K?

t := XDtX>D, LX = XG, used by previous work [Bronstein et al. 2011; Ovsjanikov
et al. 2010; Rustamov 2007; Sun et al. 2009; Vaxman et al. 2010]. Finally, the weighted heat diffusion kernel is still the
exponential Kt := exp(�tB�1L) of the linear FEM Laplacian matrix.

Indicating with ei the i-th vector of the canonical basis of Rn, Ktei is the map achieved by applying the diffusion process to
the function that takes value one at the anchor pi and zero otherwise. We compare the basis function K?

t ei and Ktei, which
are induced by the Voronoi-cot and wFEM heat kernel, respectively. As shown in Fig. 8, irregularly-sampled patches on M
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Figure 7: Level-sets of the harmonic function with four Dirichlet boundary conditions on a (a) smooth and (b) deformed
shapes. In (b), the corresponding harmonic maps is slightly affected by surface changes.

generally affect the smoothness of K?
t ei at smaller scales; increasing t improves the smoothness of K?

t ei in terms of regularity
of the level-sets and of a lower number of critical points. On the contrary, the smoothness of Ktei is guaranteed through all
the scales in spite of the discretization of M . The heat kernels Kt and K?

t are intrinsically scale-covariant (i.e., without shape
or kernel normalization) and scale-invariant through a normalization of the Laplacian eigenvalues. In [Bronstein et al. 2010b;
Bronstein et al. 2010c], these properties and the robustness of the wFEM heat kernel against shape transformation, sampling,
and noise have been verified by testing the matching performances of the wFEM heat kernel descriptors on the SHREC’10 data
set. For more details, we refer the reader to Sect. 5.1.

Once the Laplacian eigensystem is known, the computation of F(·, t) takes O(n)-time. However, using the whole spectrum is
computationally unfeasible. To overcome this limitation, we consider only the contribution related to the first k eigenvalues;
i.e., Fk(t) = Âk

i=1 exp(�lit)hf,xiiBxi. Applying the computation described in [Vallet and Levy 2008], these eigenpairs are
computed in super-linear time. If t := 0, then the map Fk(0) = Âk

i=1hf,xiiBxi is the least-squares approximation of f in the
linear space generated by the first k eigenfunctions and with respect to the norm k ·kB. Indeed, both the parameters k and t
define the hierarchy of approximations. In fact, reducing the number of Laplacian eigenfunctions results in a smoothing of
the input map and a further simplification of its critical points, with more emphasis on those with a low persistence value.
A spectrum-free computation of the heat diffusion kernel, which is based on the Chebyshev approximation of the exponential
matrix, has been recently proposed in [Patanè 2013b; Patanè and Spagnuolo 2013a]. For an interactive comparison of Laplacian
spectral kernels and distances, we refer the reader to [Patanè and Spagnuolo 2013b].

The discrete heat diffusion kernel is central for shape segmentation [de Goes et al. 2008] and comparison [Bronstein and
Kokkinos 2010; Bronstein et al. 2011; Dey et al. 2010; Gebal et al. 2009; Ovsjanikov et al. 2010] through heat kernel shape
descriptors, auto-diffusion maps [Gebal et al. 2009], and diffusion distances [Bronstein et al. 2010a; Coifman and Lafon 2006;
Lafon et al. 2006]; dimensionality reduction [Belkin and Niyogi 2003; Xiaoa et al. 2010] with spectral embeddings; the com-
putation of the gradient of discrete maps [Wang 2009] and the multi-scale approximation of functions [Patanè and Falcidieno
2010]. In [Vaxman et al. 2010], prolongation operators have been applied to extend the values of the heat diffusion kernel
computed on a low resolution representation of M to higher resolutions through the hierarchy associated to multiresolutive
simplification algorithms. Recently, the heat equation and the associated diffusion metric have been used to define multi-scale
shape signatures [Sun et al. 2009], compare 3D shapes [Mèmoli 2009], and approximate the gradients of scalar functions de-
fined on triangulated surfaces and point sets [Wang 2009]. Combining the smoothness of the Laplacian eigenfunctions with the
multi-scale structure induced by the time parameter of the heat kernel on a 3D shape M , it is possible to compute a smooth
approximations of scalar functions defined on M and define new function spaces for shape analysis.

Heat diffusion and spectral distances Through the Laplacian spectrum, previous work has defined several spectral distances
(e.g., commute-time, bi-harmonic, and diffusion distances), which are intrinsic to the input shape, invariant to isometries, shape-
aware, robust to noise and tessellation. Bi-harmonic [Ovsjanikov et al. 2012; Lipman et al. 2010; Rustamov 2011b] distances
provide a trade-off between a nearly-geodesic behavior for small distances and global shape-awareness for large distances,
thus guaranteeing an intrinsic multi-scale characterization of the input shape. The heat diffusion distances have been used in
the context of spectral graph theory [Chung 1997] (Ch. 10), manifold learning [Belkin and Niyogi 2003; Coifman and Lafon
2006; Lafon et al. 2006], and shape comparison [Bronstein et al. 2010a; Bronstein and Kokkinos 2010; Bronstein et al. 2011;
Bronstein and Bronstein 2011; Dey et al. 2010; Gebal et al. 2009; Mahmoudi and Sapiro 2009; Mèmoli 2009; Ovsjanikov et al.
2010; Rustamov 2007; Sun et al. 2009] through multi-scale and density invariant embeddings. Additional applications include
shape segmentation [de Goes et al. 2008], the computation of the gradient of discrete maps [Wang 2009] and the multi-scale
approximation of functions [Patanè and Falcidieno 2010]. For an interactive comparison of spectral distances, we refer the
reader to [Patanè and Spagnuolo 2013b].
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Figure 8: Level-sets of the basis Ktei induced by the (a) Voronoi-cot and (b) wFEM heat kernel on an irregularly-sampled
surface with respect to different values of the time parameter.

4 From surface-based to volume-based shape modeling
Shape modeling typically handles a 3D shape as a two-dimensional surface, which describes the shape boundary and is rep-
resented as a triangular mesh or a point cloud. However, in several applications a volumetric surface representation is more
suited to handle the complexity of the input shape. For instance, volumetric representations accurately model the behavior of
non-rigid deformations and volume constraints are imposed to avoid deformation artifacts. In shape matching, volumetric de-
scriptors, such as Laplacian eigenfunctions, heat kernels, and diffusion distances, are defined starting from their surface-based
counterparts. In these cases, a surface-based information, which is typically represented as a shape-driven map, is extended to
the interior of the input shape or, more generally, to the surrounding volume. This step typically relies on the integration of
shape-based and volumetric information, together with smoothness conditions, interpolating constraints, preservation of feature
values at both a local and global level.

Besides the underlying complexity and degrees of freedom in the definition of volumetric approximations of surface-based
maps, volumetric approximations (i.e., the extension of a surface-based scalar function to a volume-based approximation)
are essential to address a wide range of problems. For instance, the approximation of spatio-physico-chemical properties
measured or simulated on a molecular surface to the surrounding volume could be used to predict the interactions among
proteins [Cipriano and Gleicher 2007]. Computing corresponding feature elements [Jain and Zhang 2007], harmonic volumetric
mappings [Li et al. 2009a; Li et al. 2010b; Martin et al. 2008b; Martin and Cohen 2010], and volumetric [Rustamov 2011a]
shape descriptors by extending the surface-based Laplacian eigenvectors to the surrounding volume [Rustamov 2011b] avoids
the evaluation of volumetric descriptors directly on a tessellation of the input shape. In this way, the computational cost,
which is generally high in case of volumetric meshes, is effectively reduced. Furthermore, descriptors primarily defined on
surfaces (e.g., GPS embedding [Rustamov 2007], biharmonic distances [Lipman et al. 2010; Rustamov 2011b], and heat kernel
signatures [Sun et al. 2009]) can be approximated to measure volumetric information.

Given a piecewise linear scalar function f : M ! R, we want to define a volumetric approximation F : R3 ! R that satisfies
different types of conditions, such as interpolation of the f -values, approximation accuracy, smoothness, preservation of the
critical points. To this end, we focus on the following volumetric approximation schemes: (i) linear precision methods through
generalized barycentric coordinates (Sect. 4.1); (ii) implicit methods with radial basis functions (Sect. 4.2); (iii) integration of
surface- and cross-volume parameterization (Sect. 4.3); (iv) polycube splines (Sect. 4.4); (v) moving least-squares techniques
(Sect. 4.5); (vi) topology-driven approximation (Sect. 4.6). Finally, we compare the computation cost of the aforementioned
approximations (Sect. 4.7).

4.1 Linear precision approximation

Barycentric coordinates provide a standard technique for interpolating discrete scalar, vector, or even multidimensional fields
from the boundary of a domain over its interior, and are useful in a variety of applications in computer graphics, such as
texture mapping [Desbrun et al. 2002], deformation [Ju et al. 2005; Lipman et al. 2007], texture synthesis [Takayama et al.
2010], and image composition [Farbman et al. 2009]. For instance [Rustamov 2011a], the Laplacian eigenvectors of a given
surface are extended into the shape interior using piecewise linear interpolation with barycentric coordinates. These volumetric
eigenvectors provide the basis for the definition of shape-aware barycentric coordinates and of volumetric shape descriptors,
such as the volumetric global point signature (GPS), biharmonic and diffusion embeddings. In particular, they generalize the
GPS embedding, the biharmonic distances, and the heat kernel signatures, which have been primarily defined on surfaces.

Barycentric coordinates are commonly computed through the solution of a linear system, the minimization of an energy func-
tional with constraints, or a closed form. Over the last two decades, many closed-form barycentric coordinates have been



developed for convex [Dasgupta and Wachspress 2008; Pinkall and Polthier 1993; Floater 2003] and arbitrary [Hormann and
Floater 2006] shapes. Variants include mean value [Floater 2003; Hormann and Floater 2006; Ju et al. 2005], Green [Lipman
et al. 2008], and Poisson [Li and Hu 2013] coordinates. Recently, these coordinates have been enriched with constraints on
their regularity and accuracy [Li et al. 2013b], harmonicity [Joshi et al. 2007; Hormann and Sukumar 2008; Weber et al. 2012;
Jacobson et al. 2011; Lipman et al. 2008], and positiveness [Lipman et al. 2007]. We also mention the maximum entropy
coordinates [Hormann and Sukumar 2008], which are computed by solving a linear system or through an iterative process, and
recent generalizations of barycentric coordinates to the complex plane [Weber et al. 2009; Weber and Gotsman 2010; Weber
et al. 2011].

4.2 Function approximation with RBFs

In the following, we review global approximation scheme with radial basis functions (RBFs) and globally-supported or locally-
supported kernels.

Interpolating constraints Choosing a kernel j : R+ ! R, the volumetric approximation F : R3 ! R of f : M ! R is
defined as [Aronszajn 1950; Poggio and Girosi 1990]

F(p) :=
n

Â
i=1

aiji(p)+p(p), p := (x,y,z), (6)

that is, a linear combination of the radial basis functions ji(p) := j(kp�pik2), centered at {pi}n
i=1, plus a first-degree poly-

nomial p(p) := b0 +b1x+b2y+b3z. The second term p in (6) is used to fit f over regions of P where it is linear. Then, the
coefficients in (6) that uniquely satisfy the interpolating conditions F(pi) = f (pi), i = 1, . . . ,n, are the solution of the follow-
ing (n+4)⇥ (n+4) square linear system
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a1 . . . an b0 b1 b2 b3
⇤>

,

with ai j := j(kpi �p jk2) and pi := (px
i , py

i , pz
i ). The last four rows of the full matrix in (7) correspond to the natural additional

constraints
n

Â
i=1

ai px
i = 0,

n

Â
i=1

ai p
y
i = 0,

n

Â
i=1

ai pz
i = 0.

These relations guarantee that the coefficient matrix in Eq. (7) is invertible; in fact, the n⇥n sub-matrix A := (ai j)i, j is
conditionally positive-definite on the subspace of vectors that are orthogonal to the last four rows of the full matrix.

Least-squares constraints To reduce the amount of memory storage and computation time of the implicit approximation,
sparsification methods select a set of centers such that the associated function F approximates the f -values within a target
accuracy. This aim is usually achieved through a-posteriori updates of the approximating function, which are guided by the
local approximation error [Carr et al. 2001; Chen and Wigger 1995; Kanai et al. 2006; Ohtake et al. 2005b; Shen et al.
2004], or by solving a constrained optimization problem [Girosi 1998; Patanè 2006; Steinke et al. 2005; Walder et al. 2006].
Clustering techniques can also be applied to group those points that satisfy a common “property” and center a basis function
at a representative point of each cluster. Main clustering criteria are the planarity and closeness, measured in the Euclidean
space using the k-means clustering [Lloyd 1982] and the principal component analysis [Jolliffe 1986] (PCA). As an alternative,
kernel methods [Cortes and Vapnik 1995] evaluate the correlation among points with respect to the scalar product induced by
a positive-definite kernel. In this case, the PCA and the k-means algorithm lead to efficient clustering techniques, such as the
kernel PCA and the Voronoi tessellation of the feature space [Schoelkopf and Smola 2002] (Ch. 1). Finally [Weiler et al. 2005],
the set of centers can be enriched by including the peaks and low frequency regions of the input data.

Once the centers B := {ci}r
i=1 of the globally-supported basis functions have been selected, we can also compute the best

approximation of f with respect to the least-squares error between the piecewise linear restriction FP of F to P and f . We



notice that B might be a subset of P . To this end, we search the function F(p) := Âi2I aiji(p) that minimizes the least-
squares approximation error E := Ân

i=1 |F(pi)� f (pi)|2. Let A be the n⇥ r matrix defined using the new set B of selected
centers and the set P of samples. Then, the minimum of the least-squares error E is attained at the solution a of the normal
equation A>Aa = A>b; i.e., a = A†b, with A† := (A>A)�1A pseudoinverse of A. Assuming that n is large, we do not
construct the n⇥ r matrix A but we store only the r⇥ r coefficient matrix A>A and the right-hand vector A>b. Finally,
the solution of the corresponding linear system is computed using direct or iterative solvers without explicitly storing the
pseudoinverse.

Choice of the kernel Depending on the properties of j and of the corresponding approximation scheme, we distinguish
globally-supported [Carr et al. 2001; Turk and O’Brien 2002] and compactly-supported [Wendland 1995; Morse et al. 2001;
Ohtake et al. 2005a] supported radial basis functions, and the partition of unity [Ohtake et al. 2003; Xie et al. 2004]. We briefly
remind that the support of an arbitrary map g : R3 ! R is defined as the set supp(g) := {p 2 R3 : F(p) 6= 0}. If supp(g) := R3,
then g has global support. Common choices of kernels with global support are the Gaussian j(t) := exp(�t), the harmonic
j(t) :=| t |�1, and the bi-harmonic j(t) :=| t |3 kernel. Main examples of locally-supported kernels are j(t) := (1� t)2 [Morse
et al. 2001] and j(t) := (1� t)4(4t +1) [Wendland 1995]. Globally-supported kernels are associated to full coefficient ma-
trices, which require a prohibitive storage and computational cost with respect to compactly-supported kernels. Selecting
compactly-supported basis functions generally provide sparse coefficient matrices and a lower computation cost (Sect. 4.7).
However, the corresponding volumetric approximation F : R3 ! R has several and small iso-surfaces that have artifacts where
the supports of the basis functions intersect. Therefore, the selection of a compact support might result in a poor visualization
of F and a coarse approximation of f on P . Furthermore, the support selection is not trivial and a local definition of F would
not extrapolate the behavior of f on the interior and exterior of P .

The variance and width parameters of Gaussian [Co et al. 2003; Jang et al. 2004; Weiler et al. 2005] and ellipsoidal [Jang et al.
2006; Hong et al. 2006] basis functions, which are best suited to fit data that are not radially symmetric, are computed using the
Levenberg-Marquardt optimization method [Madsen et al. 2004]. The maximum principle of harmonic maps is easily applied
to the approximation scheme with interpolating and least-squares constraints. In fact, the values of F in the interior of P are
fully determined by its boundary conditions, which are selected among the f -values. Since the function ji(p) := kp�pik�1

2
is not defined at pi, the harmonic kernel is centered at the offset points ci previously introduced. In particular, F is harmonic
(i.e., DF = 0) in D := R3\B, with B := {ci}r

i=1, as superposition of harmonic functions. Under these assumptions, F : D ! R
is the unique solution of the Laplace equation DF(p) = 0, p 2 D , with Dirichlet boundary conditions F(pi) = f (pi), i 2 I .
Once the boundary constraints have been fixed, the function F minimizes the Dirichlet energy

R
D k—F(p)k2

2dp.

4.3 From surface- to cross-volume parameterization

Using the volumetric harmonic maps previously introduced, we now discuss the cross-volume paramterization, which is com-
puted extending a harmonic map from the input surface to the surrounding space.

Cross-surface parameterization Cross-surface parameterization is an important tool in surface modeling. It computes a
bijective correspondence between two surfaces f : N1 ! N2. This correspondence enables numerous applications such as
shape analysis, interpolation, comparison, and texturing. Given two surfaces N1,N2 ⇢ R3, their cross-surface mapping can be
computed and measured by the composition of their parameterization over a common geometrically homogeneous domain W.
Suppose we have the parametric representations f : W ! N1 and j : W ! N2 for N1 and N2, respectively,

f(u1,u2) = (f1(u1,u2),f2(u1,u2),f3(u1,u2)),
j(u1,u2) = (j1(u1,u2),j2(u1,u2),j3(u1,u2)),

where (u1,u2) is a point in a parametric domain W in R2. With the same coordinate (u1,u2) on W, each point

p = (f1(u1,u2),f2(u1,u2),f3(u1,u2)) 2 N1

is mapped to its image point
f (p) = (j1(u1,u2),j2(u1,u2),j3(u1,u2)) 2 N2

by the composition f := j �f�1.

A mapping f : N1 ! N2 is isometric or length-preserving if any arc on N1 has the same length as its image on N2. Such
a mapping is called an isometry. The map f is conformal or angle-preserving if the angle of intersection of every pair of
intersecting arcs on N1 is the same as that on N2 (Sect. 2.1). The map f is equiareal or area-preserving if each region on N1
has the same area of its image on N2. An isometric map is both conformal and equiareal. It is usually desirable to minimize
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Figure 9: Solving cross-surface mapping for high-genus surfaces. (a) Mapping by divide-and-conquer through consistent
surface decomposition [Li et al. 2009a], (b) global optimization on the covering space with uniformization metrics [Li et al.
2008].

the metric distortion of the map, i.e., to seek for the isometric map that is both angle-preserving and area-preserving. However,
isometry rarely exists between the two arbitrarily given surfaces. In practice, users usually minimize length distortion, angle
distortion, or a trade-off between the angle and area distortions.

According to the Riemannian uniformization theorem (Sect. 2.2), for any simply connected surface, one of the following three
canonical domains: a sphere, the complex plane, and an open disk can be used for the mapping composition. According to
topological types of the given surface, different surface parameterization techniques should be utilized. Examples of cross-
surface mappings are shown in Fig. 9. Inter genus-0 surface mapping can be composed over a common sphere [Kent et al.
1992; Alexa 1999; Asirvatham et al. 2005; Kobbelt et al. 1999] or planar disk [Kanai et al. 1998; Haker et al. 2000] domain.
For closed genus-0 surfaces, i.e., the topological spheres, many effective spherical parameterization techniques that minimize
angle distortion [Haker et al. 2000; Gu and Yau 2003; Sheffer et al. 2004; Stephenson 2005; Zeng et al. 2007], or a balance
between angle and area distortions [Isenburg et al. 2001; Gotsman et al. 2003; Saba et al. 2005; Friedel and Desbrun 2005;
Zayer et al. 2006] have been developed. Efficient multi-resolution algorithms [Shapiro and Tal 1998; Praun and Hoppe 2003;
Wan et al. 2012] are also used to reduce the number of local minima and accelerate the expensive nonlinear optimization on
the sphere. For open genus-0 surfaces, i.e., the topological disks, their parameterization over planar domains [Floater and
Hormann 2005; Sheffer et al. 2006; Hormann et al. 2007] has been extensively studied and many efficient algorithms can be
adopted directly.

For high genus surfaces, finding a simple canonical domain becomes nontrivial. There are two general approaches to com-
pute their cross-surface parameterization. One approach is to first segment surfaces Ni, i = 1,2, into two consistent sets of
subregions, Ni =

Sm
j=1

fNi, j, then obtain the global mapping by composing local maps between corresponding subregions:
fk : fN1,k ! fN2,k. To enable such a divide-and-conquer mapping approach, the decomposition should satisfy that (a) each sub-
region has simple topology (e.g., topological disks) and geometry (e.g., flat, convex, etc.) so that the subregion mapping can
be computed efficiently, and (b) the partitioning is topologically consistent, i.e. the dual graphs of the two decompositions
are isomorphic to each other. This decomposition is referred to as the consistent decomposition. A few semi-automatic or
automatic effective consistent decomposition algorithms have been proposed [Kwok et al. 2012; Kraevoy and Sheffer 2004;
Schreiner et al. 2004; Li et al. 2009a; Zhang and Li 2012; Shalom et al. 2008; Kraevoy et al. 2007; Zhang et al. 2012]. Map-
ping computation through divide-and-conquer is efficient, and locally the mapping quality can be significantly improved. Its
challenge is the effective handling of the distortion and discontinuity across the decomposition boundary. Also, the mapping
result is directly dictated by the decomposition quality.

The second approach for inter high-genus surface mapping is to directly compute the global mapping through one global domain
with certain desirable Riemannian metrics. For example, the domain W for high genus surfaces can be Riemannian surfaces
of non-positive constant curvature [Schoen and Yau 1997] by deforming the target surface N2 to tile the complex plane C 2 (if
surface N2 is genus-1) or tile the unit hyperbolic disk H 2 (if N2 is genus-n, n > 1). Upon such an W, a harmonic map can be
computed through an global optimization. A key advantage of using such a uniformization metric is that the objective function
does not have local minima and one can obtain a globally optimal solution [Li et al. 2008]. Other types of canonical domain W
with good geometric regularity/simplicity, such as polycubes [Wan et al. 2011] or N-hole tori [Grimm and Hughes 2003], can
also be used to compose cross-surface mapping.

From surface to cross-volume parameterization Many real-world data are volumetric and have both boundary surface ge-
ometry and interior texture or material attributes. To model such volumetric data, their interior material, intensity, or other
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Figure 10: Extending cross-surface mapping to cross-volume mapping [Li et al. 2007] on (a) genus-0 and (b) high-genus
surfaces.

structural information, should be considered and volumetric parameterization needs to be studied. Inter volume mapping can
be extended from the boundary surface mapping. Given two volumetric regions V1 and V2, the volumetric mapping f : V1 ! V2
consists of three scalar fields F := (f1,f2,f3) defined on V1. To measure the quality of F, we consider two criteria: geometric
distortion and feature alignment.

• Geometric distortion. Similar to the surface map, the distortion of a volumetric map can be also measured by the metric
changes between the original and the transformed spaces. It is often desirable to have the geodesic distances, angles, and
volumes preserved under the mapping.

• Feature alignment. The volumetric data usually possess nonuniform interior materials/layers, and their mapping should
incorporate these nonuniform structures. For example, feature curves, feature surfaces, and other sub-structures (such as
local landmarks or global symmetry pattern) often encode important information. Hence, the scalar fields {f j, j = 1,2,3}
may need to satisfy some extra constraints, and their gradients {—f j} should align with (be parallel or perpendicular to)
some given directions.

Wang et al. [Wang et al. 2004] discretized the volumetric harmonic energy over tetrahedral mesh, and generalize the spherical
surface mapping to the volumetric harmonic sphere mapping. Such a discrete Laplacian discretization was also used for
extending polycube surface parameterization to the mapping of given model’s entire volume space [Han et al. 2010; Xia et al.
2010]. Li et al. [Li et al. 2007; Li et al. 2009b; Li et al. 2010a; Xu et al. 2013] used the surface mapping as the boundary
condition and extend the cross-surface map to a cross-volume map using the fundamental solution method. Martin et al. [Martin
et al. 2008b] parameterized the surface model onto a cylinder, then extend the parameterization into the interior volume using
the finite element method; later, they also generalized the algorithm to more complicated models with medial surfaces [Martin
et al. 2012].

There are also quite a few volumetric parameterization algorithms that directly solve the mapping between two volume regions,
without first computing boundary surface mapping. Such an approach, avoiding pre-computing a boundary condition, can
usually result in smaller mapping distortion. However, the problem reduces to a big non-linear optimization problem with both
integer and certain linear/nonlinear constraints, hence it is much more expensive to solve [Nieser et al. 2011; Huang et al. 2011;
Li et al. 2012]. Fig. 10 shows the extension of cross-surface to cross-volume mappings.

4.4 Polycube parameterization and polycube splines

An alternative to volumetric approximation with RBFs is given by the polycube splines, which are defined starting from the
volumetric parameterziation of the input surface.

Polycube parameterization The polycube can serve as a special desirable domain for shape modeling. A polycube can be
formally defined as an orthogonal polyhedron where three mutually-perpendicular axis-parallel edges meet at every corner
vertex. Polycube mapping was first introduced by Tarini et al. [Tarini et al. 2004] for seamless texture mapping, in which
polycube domain is constructed manually and the mapping is constructed by iteratively minimizing a deformation energy.
Wang et al. [Wang et al. 2008] introduced an intrinsic polycube parameterization method based on discrete harmonic maps,
which guarantees the mapping bijectivity and reduces the mapping distortion. Xia et al. [Xia et al. 2011] proposed an editable
polycube mapping method which provides a regular and artist-controllable quad mesh with a parameterized subdivision scheme.
Li et al. [Li et al. 2010a] proposed the generalized polycube parameterization upon the so called generalized polycube domain,
which is composed of a set of locally glued topological cubes that can be geometrically curved and non-axis aligned. A key
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Figure 11: Polycube Splines construction [Wang et al. 2008]. The Polycube is covered by face and edge charts (a,b). The
polycube corners (yellow) are singularities which are not covered by any charts (c). In (d), one face chart was highlighted with
its associated edge charts and singularities.

difficulty in polycube parameterization is the construction of desirable polycube domain shape.

The aforementioned manual or semi-manual polycube construction algorithms could be tedious when modeling shapes with
complicated geometry. Lin et al. [Lin et al. 2008] proposed a polycube parameterization algorithm using the Reeb graph. This
method can automatically construct polycubes for models with simple topology and geometry. He et al. [He et al. 2009] used
a line-scanning-like strategy to construct polycubes. This approach is sensitive to the object’s orientation and off-axis features
and could result in over-refined polycubes with many corner points. Gregson et al. [Gregson et al. 2011] proposed a rotation-
driven and position-driven deformation algorithm to construct polycubes. To get rid of topologically erroneous wedges, a non-
trivial post-processing is needed. Wan et al. [Wan et al. 2011] proposed a topology-preserving polycube mapping optimization
algorithm that simultaneously optimizes the polycube domain shape and surface mapping. More recently, Li et al. [Li et al.
2013a] presented an effective polycube construction and optimization algorithm using 3D homotopic morphological operations.

Polycube splines These polycube parameterizations can be used for polycube spline construction [Wang et al. 2008; Li et al.
2013a; Wang et al. 2012]. An affine atlas can be constructed from the polycube map in the following way. Each face and edge
on the polycube domain W are associated with its own local chart. Each face chart covers only interior points of corresponding
face and leaves off all the edges of the face. Each edge chart covers interior points of the edge but leaves off corner vertices.
Furthermore, there are overlaps between face charts and edge charts. The transition functions between overlapped edge and face
charts are simply translations and rotations. Note that there is no vertex chart for the corner vertex, i.e., the corners are singular
points, denoted by C. Therefore, by removing all the corners, polycube map naturally induces the affine structure [Wang et al.
2008] and spline surfaces can be directly defined on polycube domain. These concepts are illustrated in Fig. 11.

The key advantage for defining splines over polycube maps is that each face chart of the polycube is nothing more than a union
of rectangles. Tensor-product splines can be naturally defined over rectangular regions. Using the T-splines [Sederberg et al.
2003], we can flexibly control the hierarchical and level-of-detail refinement in spline constructions. For every control point
in the T-mesh, the covering region of its basis function is a rectangle, whose side lengths (knot vectors) are determined by the
connectivity of the T-mesh. On each chart, the basis functions are enforced to vanish outside the boundary of the chart. Thus,
the face charts are totally separate from each other. Each edge chart connects two face charts (one face chart if it is a boundary
edge and not shared by two faces). Therefore, given an arbitrary parameter u 2 W\C, it may be covered by a single face chart,
or a single edge chart, or by one face chart and one edge chart. On each (edge and face) chart (Ui,fi), the spline patch is defined
as a point-based spline whose control points form a T-mesh.

The polycube spline can be formally defined as F(p) = Âi Fi(p), p 2 W\C, where Fi(p) = Â j c jB j(fi(p)) is the spline surface
patch defined on an edge or face chart (Ui,fi) and c j 2R3 are the control points, and B j are the basis functions. The spline fitting
can be formulated as minimizing a linear combination of interpolation and fairness functionals, i.e., min{Edist +lE f air}. The
first part is the least-squares approximation error Edist = Âm

i=1 kF(pi)�pik2, where pi 2M is the parameter for pi, i = 1, . . . ,m.
The second part is a smoothing term. A frequently used example is the thin-plate energy

E f air =
Z Z

M
(F2

uu +F2
uv +F2

vv)
2dudv.

A few polycube spline surfaces are illustrated in Fig. 12. Similarly, the polycube surface splines can be generalized to volumetric
splines for solid models [Wang et al. 2012].
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Figure 12: Polycube Spline surface examples [Wang et al. 2008].

4.5 Moving least-squares and local approximation

As an alternative to the global approximation schemes previously introduced, we review two local methods that are based on
the moving least-squares (MLS) approximation with polynomials and the local approximation with RBFs.

MLS approximation with polynomials The key element of the MLS approximation is the solution of a linear system, whose
size is proportional to the degree of the polynomials that are reproduced by the method [Farwig 1986; Levin 1998]. To this end,
we search the approximation F : R3 ! R in the linear space F := span{j1(p), . . . ,jr(p)} generated by the monomials ji(p),
p := (x,y,z), i = 1, . . . ,r, of degree lower than s. In the space F , the norm k ·kW (p) is induced by the weighted l2 scalar product

h f ,giW (p) :=
n

Â
i=1

f (pi)g(pi)W (p,pi) = f>W (p)g, (8)

with W (p) := diag(W (p,pi))n
i=1 positive-definite diagonal matrix and arrays f := ( f (pi))n

i=1, g := (g(pi))n
i=1. A common

choice is the exponential map W (p,pi) := exp(�kp�pik2/s(p)) of width s(p). Then, the MLS approximation F is the solu-
tion to the quadratic minimization problem minF2F {kF � fkW (p)}. Deriving the energy E (a) := Ân

i=1 |F(pi)� f (pi)|22W (p,pi),
with respect to the unknown a(p) := (ai(p))r

i=1, we get that the stationary points of E solve the equations ∂ai(p)E = 0,
i = 1, . . . ,r, if and only if the following system of equations is satisfied

h
F>W (p)F

i
a(p) = F>W (p)f. (9)

Here, the Gram matrix F associated to the kernel that generates the RBFs and the vector of the f -values are F := (ji j)
i=1,...,r
i=1,...,n,

ji j := j j(pi). Since the kernel j is positive-definite and the matrix W (p) is diagonal, the r⇥ r coefficient matrix F>W (p)F is
symmetric and positive definite. In particular, Eq. (9) has a unique solution.

Finally, we notice that the MLS approximation generalizes the Partition of the Unity. In fact, considering only constant poly-
nomials {ji(p)}r

i=1, the MLS approximation F(·) reduces to the partition of the unity (PU) [Jin et al. 2009a]. Since the MLS
scheme reproduces a class of functions larger than the constant ones, the accuracy of the MLS approximation is generally higher
than the PU scheme.



(a) (b)

Figure 13: (a,b) Neighbors Np and N p of p, Np ✓ N p, used for the computation of the value F(p).

Associating a weight W (p,pi) to each point pi with respect to p allows us to adapt the least-squares constraints to the local
distribution of the points, thus including both the f -values and the local the local distribution of points in the computation of
F(p). Since the weight function W (·, ·) rapidly decreases to zero, the indices of the sum in (8) and in the following equations
are restricted to those of the points that belong to a neighbor Np := {p js}k

s=1 of p, which includes those points of P that fall
inside the sphere of center p and radius s(p); i.e., kp js �pk2  s(p), s = 1, . . . ,k (Fig. 13(a)). Here, the value s(p) is chosen
according to the local sampling density of P [Pauly et al. 2003]. For simplicity, we omit the dependence of the number k of
points in Np from p and s(p). This choice makes the approximation scheme local; improves the efficiency of the computation
of F(p); avoids to sample every basis function ji at p; and generally reduces the conditioning number of the coefficient matrix
in each normal equation.

Local approximation with RBFs Since MLS approximations [Dyn et al. 1986; Micchelli 1986; Wendland 1995] and the
multi-level PU [Ohtake et al. 2003] involve a polynomial basis, they cannot interpolate the f -values in an easy way. In fact,
the degree of the fitting polynomial determines the number of interpolating conditions and not viceversa. For instance, in 3D
a polynomial of degree two or three requires to impose ten or twenty interpolating constraints; however, we might have a
different number of points in different neighbors. Furthermore, in case of uneven sampling fixing the number of points in each
neighbor instead of its radius, or increasing the polynomial degree, provides unstable results due to the ill-conditioning of the
corresponding Gram matrices [Golub and VanLoan 1989].

The idea behind the local approximation [Patané and Spagnuolo 2012] is to apply the MLS approximation with RBFs. Using
a set of radial instead of polynomial basis functions allows us to combine interpolating constraints for feature preservation and
LS conditions for noise removal. In fact, the number of local interpolating constraints is equal to the number of RBFs and
no more related to the degree of the polynomial used for the local approximation. For the evaluation of F(p), we consider as
interpolating or least-squares constraints only the f -values at those points of P that belong to Np. This choice is motivated
by the observation that the behavior of any approximation of f at p is mainly controlled by the f -values in Np. Indeed, the
evaluation point p drives the selection of a set of interpolating conditions and the construction of the local approximation F
in Np (Fig. 13(b)). In Np, we approximate the input scalar function f : M ! R with the implicit map F : R3 ! R, which is
the linear combination of the RBFs B := {j js(p) := j(kp�p jsk2)}k

s=1; i.e.,
⇢

F(p) := Âk
s=1 bs(p)j js(p) = b>(p)j̃(p),

b (p) := (bs(p))k
s=1, j̃(p) := (j js(p))k

s=1.
(10)

Each function j js is generated by a map j : R+ ! R and centered at p js [Dyn et al. 1986; Micchelli 1986]. The local LS
approximation takes into account the f -values at the points of a neighbor N p larger than Np. Generally, N p is the neighbor
of p whose radius is twice the radius of Np. Then, F is computed by minimizing the error Âh

s=1 |F(p js)� f (p js)|2 through the
normal equation

(F>F)b (p) = F>fh, F := (jsr)
r=1,...,k
s=1,...,h, (11)

where jsr := j(kp jr �p jsk2)2, N p := {p js}h
s=1, k  h  n, and fh := ( f (p js))

h
s=1 is the h⇥1 right-hand side vector. Since F

is a full-rank matrix, (F>F) is invertible and Eq. (11) has a unique solution. If Np ⌘ Np, then the normal equation (11)
reduces to Fb (p) = fh. Indeed, in Np we compute the function F : R3 ! R that interpolates the values of f at the points
of Np; i.e., F(p js) = f (p js), s = 1, . . . ,k. To test the extrapolation capability, the local approximation underlying the input data
in Fig. 14(a) is resampled on a higher resolution grid with interpolating (Fig. 14(b)) and LS (Fig. 14(c)) constraints. Increasing
the neighbor size we get a larger number of basis functions in Eq. (10), which might introduce local and small perturbations to
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Figure 14: (a) Input f : P ! R and local approximation F : R2 ! R with RBFs and (b) interpolating or (c) LS constraints.
(d) L • error (y-axis) at each pixel (x-axis) of (c) with respect to a different k-nearest neighbor.

the evaluation of the F-values. As a result, the approximation error slightly increases but remains lower than 10�4 (Fig. 14(d)).

4.6 Topology-driven approximation

Traditional approaches to function approximation are mainly driven by a numerical error estimation: from our perspective,
instead, the critical points are a natural choice to guide the approximation scheme as they usually represent very relevant infor-
mation about the phenomena coded by f . For instance, in biomolecular simulation the maxima of the electrostatic charge are
those features that guide the interaction and that should be preserved for a correct analysis of the phenomenon. Approximating
the electrostatic charge on a molecular surface without preserving the distribution of its maxima and minima introduces artifacts
in the modeling of those interactions that are guided by the energy extrema. Indeed, our aim is to compute a smooth function
F : R3 ! R such that the piecewise linear map FP , which interpolates the values of F at the vertices of P , approximates the
piecewise linear scalar function f : M ! R within a prescribed error and preserves its critical points. The topology-driven
approximation [Patanè and Falcidieno 2009] computes F := F1 +F2 as the sum of two components F1,F2 : R3 ! R such that

• F1 captures the global structure of f in terms of its critical points; i.e., the piecewise linear scalar function f1 := F1,P
that interpolates the values of F1 at the vertices of P has the same critical points of f . On the basis of this property, we
refer to f1 as the global component of f ;

• F2 recovers the local details of f ; i.e., the piecewise linear scalar function f2 := F2,P , which interpolates the values of F2
at the vertices of P , guarantees that the error between f and f1 + f2 is below the target approximation accuracy. On the
basis of this property, we refer to f2 as the local component of f .

The function F1 is computed as a linear combination of globally-supported radial basis functions [Aronszajn 1950; Bloomenthal
and Wyvill 1997; Dyn et al. 1986; Poggio and Girosi 1990], whose centers are selected through an iterative procedure which
converges in a generally low number of steps. The function F2 is generated as a linear combination of locally-supported radial
basis functions, using as error metric the L •-norm or a local comparison measure [Biasotti et al. 2007; Edelsbrunner et al.
2004].

The choice of globally-supported and compactly-supported radial basis functions enable to adapt the construction of the approx-
imation to specific problem constraints, such as the number of input samples, the local accuracy, and the degree of smoothness
of the final approximation. The approximation method can also be applied to smooth the function f by selecting only the
critical points that are perceived as informative ones. For instance, f might exhibit differential noise, such a high number of
critical points with very close positions and low variation of the f -values, which is typically due to a low quality of the discrete
representations of the input data, unstable computations, or noisy measurements.

Whenever the scalar function f has a large number of critical points associated to a low variation of the f -values, it is useful to
simplify them and compute a smooth approximation of f with a lower number of critical points. Then, the idea is to build the
volumetric approximation by using only the critical points of f that describe its global behavior and neglecting those that are
redundant. To this end, we use the persistence-based simplification to identify the set of critical points which guide the implicit
approximation of f . In some cases, it might happen that we get a function h := FP whose set of critical points strictly includes
the preserved maxima, minima, and saddles of f . In Fig. 15, we show the topology-driven approximation of a noisy scalar
functions on a 3D shape.
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Figure 15: Level sets and critical points of (a,b) a noisy map f with m = 1426 minima, M = 1550 maxima, s = 2988 saddles
and (c,d) its smoothed approximation h := gP of f . Here, h has m = 28 minima, M = 25 maxima, and s = 65 saddles. In h,
the critical points of f with low-persistence have been smoothed out by the topology-driven approximation and the L •-error
between f and h is below 0.001. (e) Iso-surfaces of g. Note that the level sets in (c) and the iso-surfaces in (e) smoothly
resemble the noisy level sets in (a).

4.7 Computational cost

Approximation schemes [Dyn et al. 1986; Micchelli 1986; Wendland 1995; Martin et al. 2008a; Turk and O’Brien 2002] apply
interpolating or LS constraints globally; then, the resulting approximation is evaluated at any sample point. Since a n⇥n linear
system is solved once, the computational cost of the approximation with globally- and locally-supported RBFs is O(n3) and
O(n logn), respectively. Selecting k centers through spectral clustering and sparse representations (e.g., [Patanè 2013a]) and
applying the least-squares approach take O(n logn) and O(k3) time, respectively.

The computation of the nearest neighbor graph takes O(n logn) time [Arya et al. 1998]. Assuming that the neighbor Np
contains k points, the evaluation of F(p) with the MLS and local approximation scheme requires to solve a k⇥ k linear system,
where k is generally small (i.e., 20  k  30) and much lower than n. Its solution takes O(k3) time with direct solvers and varies
from O(k) to O(k2) in case of sparse coefficient matrix and iterative solvers [Golub and VanLoan 1989]. Then, the evaluation
of F at s sample points varies from O(sk3) to O(sk).

According to Table 1, the computational cost of the MLS and local approximation with RBFs is generally lower than the
approximation with globally-supported and locally-supported RBFs. It also reduces the memory storage from O(n3) and O(kn)
to O(k3). Finally, our method has the same order of computational complexity of local approximation schemes, such as the
MLS approximation [Dyn et al. 1986; Micchelli 1986; Wendland 1995] and the multi-level PU [Ohtake et al. 2003].

5 Applications
We focus on the main applications of the volumetric approximation of surface-based and volume-based scalar functions to
shape modeling and analysis (Sect. 5.1) and medicine (Sect. 5.2).

5.1 Shape modeling and analysis

Among the several applications of surface-based and volume-based methods in shape modeling and analysis, we have outlined
how the Laplacian eigenvectors of a given surface are extended into the shape interior using piecewise linear interpolation with
barycentric coordinates (Sect. 4.1). These volumetric eigenvectors provide the basis for the definition of shape-aware barycen-
tric coordinates and of volumetric shape descriptors, such as the volumetric global point signature, biharmonic and diffusion
embeddings, which have been primarily defined for the surface setting. Furthermore, we have discussed how shape corre-
spondences are computed by matching manifold harmonics or mapping the surface features onto a template using barycentric
coordinates with first order precision (Sect. 4.3). We have also presented template-based shape descriptors and the computa-
tion of harmonic volumetric mappings between solid objects with the same topology for volumetric parameterization, solid
texture mapping, and hexahedral remeshing. In the following, we focus our attention on the integration of surface-based and
volume-based descriptors for shape comparison.

Surface-based and volume-based descriptors for shape comparison. In [Bronstein et al. 2010b; Bronstein et al. 2010c;
Bronstein et al. 2011], the performances of surface-based and volume-based descriptors for shape matching have been tested
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Figure 16: Parameterization of sequential lung/tumor volumes over a common domain [Xu et al. 2013]. (a) The dynamically
deforming lung/tumor models and their parameterization onto a sphere domain; (b) the transferred distance field from one lung
model to the sphere domain; (c) the correspondence among sequential models induced by the volumetric parameterization.

Table 1: Computational cost of different approximations: solution of the normal equation (LSys.); evaluation of F at p (Ev. p)
and a set S of s samples (Ev. S ). The column (Con.) indicates the type of constraints; i.e., interpolating (In.) and least-
squares (LS.). Approximation methods include MLS with RBFs, MLS with polynomial functions [Dyn et al. 1986; Micchelli
1986; Wendland 1995], Partition of the Unity (PU) [Ohtake et al. 2003], locally [Morse et al. 2001] and globally-supported
RBFS [Turk and O’Brien 2002].

Approx. Scheme LSys. Ev. p Ev. S Con.
MLS with RBFs O(k3) O(k) O(sk3) In./Ls.
MLS O(k3) O(k) O(sk3) Ls.
PU O(k3) O(k) O(sk3) Ls.
LocS-RBF O(n2) O(n) O(sk3) In./Ls.
GS-RBF O(n3) O(n) O(sk3) In./Ls.

on the SHREC’10 data set. It consists of shapes modified through transformations of different strength. The transformations
are: null transformation, isometry (non-rigid almost isometric deformations), topology (welding of shape vertices resulting in
different triangulation), micro holes and big holes, global and local scaling, additive Gaussian noise, shot noise, down-sampling
(less than 20% of the original points), partial occlusion, and mixed transformation.

For the robust feature detection and description benchmark [Bronstein et al. 2010b], the number of transformations per shape
was 45 and the total data set size was 138. Three classes of feature description methods have been compared: (i) the heat
kernel signature [Sun et al. 2009] with Voronoi-cot weights and feature points detected as local maxima of the signature
without/with (SHK1/SHK2) simplification based on persistence homology [Zomorodian and Carlsson 2005]; (ii) the dense
signature [Bronstein et al. 2011] based on the Voronoi-cot (DHK1) and wFEM (DHK2) heat kernel; (iii) the spin image
signatures [Johnson and Hebert 1999] (SP). The heat kernel signatures show the best results among the compared algorithms; on
average, the wFEM heat kernel provides the highest robustness among all the transformations of different strength. According
to the results and discussion reported in [Bronstein et al. 2010b; Bronstein et al. 2010c], among sparse descriptors (SHK1,
SHK2, and spin images SI) the best results in average repeatability are achieved by SHK1. Furthermore, the best results in
average repeatability in local scale and sampling classes are achieved by SHK1; in micro holes and scale, the best results are
provided by SHK2; in isometry, holes, noise classes, SHK1 and SHK2 have similar performances; and spin image (SI) feature
descriptor performs the best in topology and shot noise classes. Among dense descriptors (DHK1�3), DHK1 and DHK2 show
equal average performance, with FEM-based descriptor (DH2) being slightly better in the topology, local scale, sampling, and
noise classes; the scale-invariant heat kernel signatures (DHK3) perform the best in the scale class.

For the robust large-scale shape retrieval benchmark [Bronstein et al. 2010c], the total number of transformations per shape
was 55 and the total number of query shapes was 715. Three classes of methods have been compared: visual similarity [Lian
et al. 2010a; Lian et al. 2010b]; part-based bags of features [Toldo et al. 2009]; Shape-Google [Bronstein et al. 2011] based on
the heat kernel shape descriptor using Voronoi-cot [Desbrun et al. 1999; Pinkall and Polthier 1993] or wFEM weights (Sect. 3.2),
with or without kernel normalization [Bronstein and Kokkinos 2010]. For the evaluation of the results, we have used the mean
average precision (mAP); i.e., mAP := Âi P(i)rel(i), where rel(i) is the relevance of a single rank and the precision P(i) is
computed as the percentage of relevant shapes in the first i top-ranked retrieved shapes. Ideal retrieval performance results in
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Figure 17: Template-guided fragment reassembly. [Yin et al. 2011]. (a-d) Fragments (grey) are reassembled using a template
template skull (blue); (e-f) show the assembly results.

mAP = 100%.

On average, HKS local descriptor computed with Voronoi-cot weights and 96 bit similarity sensitive hash and Shape-Google
using scale-invariant heat-kernel signatures, which represents 3D shapes as binary codes through bag-of-features embedded in
the Hamming space, have the best performances on all class of transformations. In this case, we have 98,27% mAP on the
full query set. Second best in all strengths is Visual Similarity with 94.33% mAP and at the third place we have SI-HKS local
descriptor computed with Voronoi-cot weights with 90.79% mAP. Finally, VS2 and Shape-Google using heat kernel shape
descriptors based on the wFEM discretization have the best robustness to sampling density; visual similarity based on clock
matching bag of features without modified manifold ranking also has the best performance in mixed transformation class.

5.2 Medical applications

In the context of medicine, we discuss how the volumetric approximations and harmonic maps can be used for conformal brain
mapping, lung tumor respiratory motion modeling, medical and forensic skull modeling and facial reconstruction.

Respiratory motion modeling for lung tumor radiotherapy Cross-volume mapping can facilitate the design of next gen-
eration radiotherapy management system. Cancer patients often need to be treated by external beam radiation therapy. The
radiation should target at the solid tumor and avoid damaging surrounding normal tissues. Recently, with the improved un-
derstanding of radiobiology and enhanced radiation hardware systems, radiotherapy planning and delivery guided by scanned-
images becomes a important research direction in medical imaging [Iyengar et al. 2012]. For example, lung cancer is one of the
most common human cancer, whose effective radiation treatment is critical but challenging due to the highly dynamic motions
of the tumor and surrounding tissues during respiratory cycles.

Sequentially scanned volumetric CT/MR images can be parameterized on a common domain, to model and predict the deforma-
tion of the lung tumor and surrounding tissues. This is referred to as the 4D parameterization of dynamic data [Metz et al. 2011;
Xu et al. 2012]. Formally, given sequential volumetric data Mi ⇢ R3 taken at different time ti, i = 1, . . . ,m, the goal is to build
a 4D parametric deformation model Y(p, t) : W⇥R!R3, where p 2 W ⇢R3 and t 2R, so that: (i) spatially, it interpolates the
sample frames (i.e., Y(W, ti) = Mi) and the deformation (which is a 3D volumetric mapping between Y(p, t) and Y(p, t +d t))
should minimize the geometric distortion; (ii) temporally, the motion ∂Y/∂ t should be smooth so that the trajectory would be
smooth. With this 4D parameterization, we can understand and predict how the data change by interpolating/extrapolating their
geometry or trajectory on any given time T . Fig. 16 shows the computation of correspondences among sequential lung/tumor
volumes induced by volumetric paramterizations over a common domain.

Medical and forensic skull modeling and facial reconstruction Facial reconstruction is a process of recreating faces of
decedents from their skeletal remains. Its main stimuli have sprung from various forensic, clinical, and academic fields. For ex-
ample, in law enforcement, it is an important enabling tool to identify victims or suspects [Manhein et al. 2000]; in craniofacial
orthopedics, it can improve pre-operative surgical planning [Berar et al. 2005]; in archaeology, it helps create visual images of
historic figures or ancient people [Benazzi et al. 2009b; Benazzi et al. 2009a]. The empirical foundation for facial reconstruc-
tion results from academic human anatomy. The common fundamental objective is to seek the best shape approximation of the
face from the skull. Direct creation of facial geometry from a limited set of anthropological rules can result in a search on a
overly large shape space. With effective surface and volume matching, we can use skull and soft-tissue templates [Greef et al.
2005; Vandermeulen et al. 2005] to help guide skull and face shape modeling and synthesis.

Skull Modeling. The fragmented or incomplete skulls can be restored with the help of subject-template matching [Yin et al.
2011; Li et al. 2011; Yu et al. 2012]. The fragment reassembly problem can be formulated as follows. Given a set of fragment
surfaces Si, fragments M S

i , i = 1,2, . . . ,n, the reassembly process is to compute a set of transformations Fi that compose
fragments into a whole skull M S =

Sn
i=1 Fi(M S

i ). Fig. 17 illustrates an example of fragmented skull reassembly. Using
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Figure 18: Volumetric head modeling [Li et al. 2010b]. (a) The parameterization of a head template model onto a sphere
domain (c). The 50% linear interpolation (b) illustrates the mapping effect. (d-f) visualize the modeling of the head model (e)
over the parametric domain (d).

a complete template skull M T as guidance and the fragment-template matching, one can develop effective 3D reassembly
algorithm. When the object and fragments can be considered as thin shells and approximated as surface patches. We can
solve Fi for M S

i , i = 1, . . . ,n, so that each Fi(M S
i ) matches with a subregion of M T . The maps Fi are used to assemble the

fragments, and they can be solved by a optimization
⇢

{Fi}= argmin{Fi} D(M T ,
Sn

i=1 Fi(M S
i ))

Fi(M S
i )

T
F j(M S

j ) = /0,8i, j,

where the objective function D(M ,N ) measures the geometric deviation between shapes M and N , (i.e., here deviation be-
tween M T and the composition of transformed fragments); the constraints mean that composed fragments should not intersect
with each other.

Facial Reconstruction. The subject face can also be synthesized by transforming template face onto a subject skull, preserving
common facial geometric characteristics [Kähler et al. 2003]. Given a template skull surface M T and its corresponding face
surface H T , the template soft tissue V T is the volumetric region bounded by M T and H T . Denote the inner and outer
boundaries of V T as ∂iV T = M T and ∂oV T = H T . We can synthesize the facial tissue V S on the subject skull M S using
a bijective transformation F applied on V T , that enforces F(∂iV T ) conform with the subject skull surface M S. Then, the
transformed template outer boundary, F(∂oV T ), will synthesize the subject face. This reduces to a volumetric mapping F :
V T !V S satisfying a set of synthesis constraints, such as inner boundary constraint (F(M T ) = M S), tissue-depth constraints
(to enforce tissue thickness over skull anthropometric points), anthropometric or aesthetic constraints (to preserve general face
geometric characteristics), and structural alignment constraints (to preserve nonuniform muscle/gland layers). Generally, F can
be formulated as a minimizer of the following energy:

min
F

Z

V T
k—F(p)�G(p)k2dp,

subject to the given synthesis constraints. Here, a matrix tensor field G is used to control the gradient of the deformation F.
Without considering any directional alignment, one can set G = 0. One can also synthesize the inhomogeneous tissues (e.g.,
muscles and glands) by setting different material stiffness and using different G. An example of volumetric head modeling is
shown in Fig. 18

6 Conclusions and future work
While previous work has addressed the processing and analysis of 3D shapes through methods that exploit either their surface-
based or volumetric representations, this survey has presented a unified overview on these works through volumetric approx-
imations of surface-based scalar functions. This unified scheme has also provided a basis for generalizing those methods that
have been primarily defined on surfaces but are open to and benefit of the integration with volumetric information. Furthermore,
it has systematically presented the theory, algorithm, and applications of discrete Ricci flow.
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Basic Concepts

David Gu Surface Geometry

Manifold

Definition (Manifold)
M is a topological space, {Uα} α ∈ I is an open covering of M,
M ⊂∪αUα . For each Uα , φα : Uα → Rn is a homeomorphism.
The pair (Uα ,φα) is a chart. Suppose Uα ∩Uβ ̸= /0, the
transition function φαβ : φα(Uα ∩Uβ )→ φβ (Uα ∩Uβ ) is smooth

φαβ = φβ ◦φ−1
α

then M is called a smooth manifold, {(Uα ,φα)} is called an
atlas.

David Gu Surface Geometry

Manifold

φα
φβ

Uα Uβ

S

φαβ

φα (Uα) φβ (Uβ)
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Holomorphic Function

Definition (Holomorphic Function)
Suppose f : C→ C is a complex function,
f : x+ iy → u(x ,y)+ iv(x ,y), if f satisfies Riemann-Cauchy
equation

∂u
∂x =

∂v
∂y ,

∂u
∂y =−

∂v
∂x ,

then f is a holomorphic function.

Denote
dz = dx + idy ,dz̄ = dx− idy ,

then the dual operators

∂
∂z =

1
2(

∂
∂x − i ∂

∂y ),
∂
∂ z̄ =

1
2(

∂
∂x + i ∂

∂y )

then if ∂ f
∂ z̄ = 0, then f is holomorphic.

David Gu Surface Geometry



biholomorphic Function

Definition (biholomorphic Function)
Suppose f : C→ C is invertible, both f and f−1 are holomorphic,
then then f is a biholomorphic function.

γ0

γ1

γ2

D0

D1
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Conformal Atlas

Definition (Conformal Atlas)
Suppose S is a topological surface, (2 dimensional manifold), A
is an atlas, such that all the chart transition functions
φαβ : C→ C are bi-holomorphic, then A is called a conformal
atlas.

Definition (Compatible Conformal Atlas)
Suppose S is a topological surface, (2 dimensional manifold),
A1 and A2 are two conformal atlases. If their union A1∪A2 is
still a conformal atlas, we say A1 and A2 are compatible.

David Gu Surface Geometry

Conformal Structure

The compatible relation among conformal atlases is an
equivalence relation.

Definition (Conformal Structure)
Suppose S is a topological surface, consider all the conformal
atlases on M, classified by the compatible relation

{all conformal atlas}/∼

each equivalence class is called a conformal structure.

In other words, each maximal conformal atlas is a conformal
structure.

David Gu Surface Geometry

Smooth map

Definition (Smooth map)
Suppose f : S1 → S2 is a map between two smooth manifolds.
For each point p, choose a chart of S1, (Uα ,φα), p ∈ Uα). The
image f (Uα)⊂ Vβ , (Vβ ,τβ ) is a chart of S2. The local
representation of f

τβ ◦ f ◦φ−1
α : φα(Uα)→ τβ (Vβ )

is smooth, then f is a smooth map.

David Gu Surface Geometry



Map between Manifolds

f

z w
τβ ◦ f ◦ φ−1

α

Uα Vβ

φα τβ

S1 ⊂ {(Uα,φα)} S2 ⊂ {(Vβ , τβ)}
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Riemannian Metric

Definition (Riemannian Metric)
A Riemannian metric on a smooth manifold M is an assignment
of an inner product gp : TpM×TpM → R, ∀p ∈M, such that

1 gp(a1X1+a2X2,b1Y1+b2Y2) = ∑2i ,j=1aibjgp(Xi ,Yj).
2 gp(X ,Y ) = gp(Y ,X )
3 gp is non-degenerate.
4 ∀p ∈M, there exists local coordinates {xi}, such that
gij = gp( ∂

∂xi ,
∂
∂xj ) are C

∞ functions.
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Pull back Riemannian Metric

Definition (Pull back Riemannian metric)
Suppose f : (M,g)→ (N,h) is a smooth mapping between two
Riemannian manifolds, ∀p ∈M, f∗ : TpM → Tf (p)N is the tangent
map. The pull back metric f ∗h induced by the mapping f is
given by

f ∗h(X1,X2) := h(f∗X1, f∗X2),∀X1,X2 ∈ TpM.

Local representation of the pull back metric is given by

f ∗h=

(

∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

)

(

h11 h12
h21 h22

)

(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
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Conformal Structure

Definition (Conformal equivalent metrics)
Suppose g1,g2 are two Riemannian metrics on a manifold M, if

g1 = e2ug2,u :M → R

then g1 and g2 are conformal equivalent.

Definition (Conformal Structure)
Consider all Riemannian metrics on a topological surface S,
which are classified by the conformal equivalence relation,

{Riemannian metrics on S}/∼,

each equivalence class is called a conformal structure.
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Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates
A surface M with a
Riemannian metric g, a
local coordinate system
(u,v) is an isothermal
coordinate system, if

g= e2λ(u,v)(du2+dv2).

David Gu Surface Geometry

Riemannian metric vs Conformal Structure

Definition (Isothermal coordinates)
Suppose (S,g) is a metric surface, (Uα ,φα) is a coordinate
chart, (x ,y) are local parameters, if

g= e2u(dx2+dy2),

then we say (x ,y) are isothermal coordinates.

Theorem
Suppose S is a compact metric surface, for each point p, there
exits a local coordinate chart (U,φ), such that p ∈ U, and the
local coordinates are isothermal.

David Gu Surface Geometry

Riemannian metric and Conformal Structure

Corollary
For any compact metric surface, there exists a natural
conformal structure.

Definition (Riemann surface)
A topological surface with a conformal structure is called a
Riemann surface.

Theorem
All compact metric surfaces are Riemann surfaces.

David Gu Surface Geometry

Smooth Surface Ricci Flow
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Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates
A surface M with a
Riemannian metric g, a
local coordinate system
(u,v) is an isothermal
coordinate system, if

g= e2λ(u,v)(du2+dv2).
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Gaussian Curvature

Gaussian Curvature
Suppose ḡ= e2λg is a conformal metric on the surface, then
the Gaussian curvature on interior points are

K =−∆gλ =−
1
e2λ

∆λ ,

where
∆=

∂ 2

∂u2
+

∂ 2

∂v2
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Conformal Metric Deformation

Definition
Suppose M is a surface with a
Riemannian metric,

g=

(

g11 g12
g21 g22

)

Suppose λ : Σ→ R is a
function defined on the surface,
then e2λg is also a Riemannian
metric on Σ and called a
conformal metric. λ is called
the conformal factor.

g→ e2λg

Conformal metric deformation.

Angles are invariant measured
by conformal metrics.
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Curvature and Metric Relations

Yamabi Equation
Suppose ḡ= e2λg is a conformal metric on the surface, then
the Gaussian curvature on interior points are

K̄ = e−2λ (K −∆gλ ),

geodesic curvature on the boundary

k̄g = e−λ (kg−∂g,nλ ).
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Uniformization

Theorem (Poincaré Uniformization Theorem)
Let (Σ,g) be a compact 2-dimensional Riemannian manifold.
Then there is a metric g̃= e2λg conformal to g which has
constant Gauss curvature.
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Uniformization of Open Surfaces
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Surface Ricci Flow
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Surface Ricci Flow

Key Idea

K =−∆gλ ,

Roughly speaking,
dK
dt =∆g

dλ
dt

Let dλdt =−K ,
dK
dt =∆gK +K 2

Heat equation!
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Surface Ricci Flow

Definition (Hamilton’s Surface Ricci Flow)
A closed surface S with a Riemannian metric g, the Ricci flow
on it is defined as

dgij
dt =

(

4πχ(S)
A(0) −2K

)

gij .

where χ(S) is the Euler characteristic number of S, A(0) is the
initial total area.

The ricci flow preserves the total area during the flow, converge
to a metric with constant Gaussian curvature 4πχ(S)

A(0) .
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Ricci Flow

Theorem (Hamilton 1982)
For a closed surface of non-positive Euler characteristic, if the
total area of the surface is preserved during the flow, the Ricci
flow will converge to a metric such that the Gaussian curvature
is constant (equals to K̄ ) every where.

Theorem (Bennett Chow)
For a closed surface of positive Euler characteristic, if the total
area of the surface is preserved during the flow, the Ricci flow
will converge to a metric such that the Gaussian curvature is
constant (equals to K̄ ) every where.
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Summary

Surface Ricci Flow
Conformal metric deformation

g→ e2ug

Curvature Change - heat diffusion

dK
dt =∆gK +K 2

Ricci flow
du
dt = K̄ −K .
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Generic Surface Model - Triangular Mesh

Surfaces are represented as polyhedron triangular
meshes.
Isometric gluing of triangles in E2.
Isometric gluing of triangles in H2,S2.
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Generic Surface Model - Triangular Mesh

Surfaces are represented as polyhedron triangular
meshes.
Isometric gluing of triangles in E2.
Isometric gluing of triangles in H2,S2.
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Generic Surface Model - Triangular Mesh

Surfaces are represented as polyhedron triangular
meshes.
Isometric gluing of triangles in E2.
Isometric gluing of triangles in H2,S2.
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Discrete Generalization

Concepts
1 Discrete Riemannian Metric
2 Discrete Curvature
3 Discrete Conformal Metric Deformation
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Discrete Metrics

Definition (Discrete Metric)
A Discrete Metric on a triangular mesh is a function defined on
the vertices, l : E = {all edges}→ R+, satisfies triangular
inequality.

A mesh has infinite metrics.
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Discrete Curvature

Definition (Discrete Curvature)
Discrete curvature: K : V = {vertices}→ R1.

K (v) = 2π−∑
i
αi ,v ̸∈ ∂M;K (v) = π−∑

i
αi ,v ∈ ∂M

Theorem (Discrete Gauss-Bonnet theorem)

∑
v ̸∈∂M

K (v)+ ∑
v∈∂M

K (v) = 2πχ(M).

α1 α2
α3

v α1
α2
v
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Discrete Metrics Determines the Curvatures

vi vj

vk

li
lj

lk

θi

θk

θj

vi vj

vk

vi vj

vk

lili

lk lk

ljlj

θi θi

θk θk

θjθj

R2 H2 S2

cosine laws

cos li =
cosθi +cosθj cosθk

sinθj sinθk
(1)

cosh li =
coshθi +coshθj coshθk

sinhθj sinhθk
(2)

1 =
cosθi +cosθj cosθk

sinθj sinθk
(3)
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Derivative cosine law
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Lemma (Derivative Cosine Law)
Suppose corner angles are the
functions of edge lengths, then

∂θi
∂ li

=
li
A

∂θi
∂ lj

= −
∂θi
∂ li

cosθk

where A= lj lk sinθi .
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Discrete Conformal Structure

David Gu Surface Geometry

Discrete Conformal Metric Deformation

Conformal maps Properties
transform infinitesimal circles to infinitesimal circles.
preserve the intersection angles among circles.

Idea - Approximate conformal metric deformation
Replace infinitesimal circles by circles with finite radii.

David Gu Surface Geometry

Discrete Conformal Metric Deformation vs CP

David Gu Surface Geometry

Discrete Conformal Metric Deformation vs CP
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Discrete Conformal Metric Deformation vs CP

David Gu Surface Geometry

Thurston’s Circle Packing Metric

Thurston’s CP Metric
We associate each vertex vi
with a circle with radius γi . On
edge eij , the two circles
intersect at the angle of Φij .
The edge lengths are

l2ij = γ2i + γ2j +2γiγj cosΦij

CP Metric (T ,Γ,Φ), T
triangulation,

Γ= {γi |∀vi},Φ= {φij |∀eij}

γk

γj

γi vi

vj vk

φki

φij

φjk

ljk
lij

lki

David Gu Surface Geometry

Discrete Conformal Equivalence Metrics

Definition
Conformal Equivalence Two CP metrics (T1,Γ1,Φ1) and
(T2,Γ2,Φ2) are conformal equivalent, if they satisfy the following
conditions

T1 = T2 and Φ1 = Φ2.

David Gu Surface Geometry

Power Circle

Definition (Power Circle)
The unit circle orthogonal to
three circles at the vertices
(vi ,γi), (vj ,γj ) and (vk ,γk ) is
called the power circle. The
center is called the power
center. The distance from the
power center to three edges
are denoted as hi ,hj ,hk
respectively.
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Derivative cosine law

Theorem (Symmetry)

dθi
duj

=
dθj
dui

=
hk
lk

dθj
duk

=
dθk
duj

=
hi
li

dθk
dui

=
dθi
duk

=
hj
lj

Therefore the differential 1-form
ω = θi dui +θjduj +θkduk is
closed.
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Discrete Ricci Energy

Definition (Discrete Ricci Energy)
The functional associated with a CP metric on a triangle is

E(u) =
∫ (ui ,uj ,uk )

(0,0,0)
θi(u)dui +θj(u)duj +θk (u)duk .

Geometrical interpretation: the volume of a truncated
hyperbolic hyper-ideal tetrahedron.
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Generalized Circle Packing/Pattern

Definition (Tangential Circle Packing)

l2ij = γ2i + γ2j +2γiγj .

vi vj

vk

wk

wi
wj

dij dji

djk

dkjdki

dik
o

hk

hi

hj

ri rj

rk

Ci Cj

Ck

C0

David Gu Surface Geometry

Generalized Circle Packing/Pattern

Definition (Inversive Distance Circle Packing)

l2ij = γ2i + γ2j +2γiγjηij .

where ηij > 1.

vi vj

vk

Ci
Cj

Ck

C0

o

dij dji

lij

hk

wk

wi
wj

djk

dkj

dik

dki

hi

hj

θjθi

θk

τij τij

τjk

τjk

τik

τik
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Generalized Circle Packing/Pattern

Definition (Discrete Yamabe Flow)

l2ij = 2γiγjηij .

where ηij > 0.

vi vj

vk

C0

o

dij dji

dkj

djk

dki

dik

wk

wiwj

hk

hj hi

τkj

τkj

τijτij

τik

τik

θk

θi θj

David Gu Surface Geometry

Voronoi Diagram

Definition (Voronoi Diagram)
Given p1, · · · ,pk in Rn, the Voronoi cell
Wi at pi is

Wi = {x||x−pi |2 ≤ |x−pj|2,∀j}.

The dual triangulation to the Voronoi
diagram is called the Delaunay
triangulation.

David Gu Surface Geometry

Power Distance

Power Distance
Given pi associated with
a sphere (pi , ri) the
power distance from
q ∈ Rn to pi is

pow(pi ,q)= |pi−q|2−r2i .

!"
#

!$%(!", #) '"
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Power Diagram

Definition (Power Diagram)
Given p1, · · · ,pk in Rn and sphere
radii γ1, · · · ,γk , the power Voronoi
cell Wi at pi is

Wi = {x|Pow(x,pi)≤Pow(x,pj),∀j}.

The dual triangulation to Power
diagram is called the Power
Delaunay triangulation.

David Gu Surface Geometry



Voronoi Diagram Delaunay Triangulation

Definition (Voronoi Diagram)
Let (S,V ) be a punctured surface,
V is the vertex set. d is a flat cone
metric, where the cone
singularities are at the vertices.
The Voronoi diagram is a cell
decomposition of the surface,
Voronoi cellWi at vi is

Wi = {p ∈ S|d(p,vi)≤ d(p,vj),∀j}.

The dual triangulation to the
voronoi diagram is called the
Delaunay triangulation.

David Gu Surface Geometry

Power Voronoi Diagram Delaunay Triangulation

Definition (Power Diagram)
Let (S,V ) be a punctured surface,
with a generalized circle packing
metric. The Power diagram is a cell
decomposition of the surface, a Power
cell Wi at vi is

Wi = {p∈S|Pow(p,vi)≤Pow(p,vj),∀j}.

The dual triangulation to the power
diagram is called the power Delaunay
triangulation.

David Gu Surface Geometry

Edge Weight

Definition (Edge Weight)
(S,V ,d), d a generalized CP metric. D the Power diagram, T
the Power Delaunay triangulation. ∀e ∈D, the dual edge ē ∈ T ,
the weight

w(e) = |e|
|ē| .

David Gu Surface Geometry

Discrete Surface Ricci Flow

David Gu Surface Geometry



Discrete Conformal Factor

Conformal Factor
Defined on each vertex u : V → R,

ui =

⎧

⎨

⎩

logγi R2

logtanh γi
2 H2

logtan γi
2 S2

David Gu Surface Geometry

Discrete Surface Ricci Flow

Definition (Discrete Surface Ricci Flow with Surgery)
Suppose (S,V ,d) is a triangle mesh with a generalized CP
metric, the discrete surface Ricci flow is given by

dui
dt = K̄i −Ki ,

where K̄i is the target curvature. Furthermore, during the flow,
the Triangulation preserves to be Power Delaunay.

Theorem (Exponential Convergence)
The flow converges to the target curvature Ki(∞) = K̄i .
Furthermore, there exists c1,c2 > 0, such that

|Ki(t)−Ki(∞)|< c1e−c2t , |ui(t)−ui(∞)|< c1e−c2t ,

David Gu Surface Geometry

Discrete Conformal Metric Deformation

Properties
Symmetry

∂Ki
∂uj

=
∂Kj
∂ui

=−wij

Discrete Laplace Equation

dKi = ∑
[vi ,vj ]∈E

wij(dui −duj)

namely
dK=∆du,

David Gu Surface Geometry

Discrete Laplace-Beltrami operator

Definition (Laplace-Beltrami operator)
∆ is the discrete Lapalce-Beltrami operator, ∆= (dij), where

dij =

⎧

⎨

⎩

∑k wik i = j
−wij i ̸= j , [vi ,vj ] ∈ E
0 otherwise

Lemma
Given (S,V ,d) with generalized CP metric, if T is the Power
Delaunay triangulation, then ∆ is positive definite on the linear
space ∑i ui = 0.

Because ∆ is diagonal dominant.
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Discrete Surface Ricci Energy

Definition (Discrete Surface Ricci Energy)
Suppose (S,V ,d) is a triangle mesh with a generalized CP
metric, the discrete surface energy is defined as

E(u) =
∫ u

0

k
∑
i=1

(K̄i −Ki)dui .

1 gradient ∇E = K̄−K,
2 Hessian

(

∂ 2E
∂ui∂uj

)

=∆,

3 Ricci flow is the gradient flow of the Ricci energy,
4 Ricci energy is concave, the solution is the unique global
maximal point, which can be obtained by Newton’s method.

David Gu Surface Geometry

One Example: Discrete Yamabe Flow

David Gu Surface Geometry

Delaunay Triangulation

Definition (Delaunay Triangulation)
Each PL metric d on (S,V ) has a Delaunay triangulation T ,
such that for each edge e of T ,

a+a′ ≤ π,

a
a′e

It is the dual of Voronoi decomposition of (S,V ,d)

R(vi) = {x |d(x ,vj)≤ d(x ,vj) for all vj}

David Gu Surface Geometry

Discrete Conformality

Definition (Conformal change)
Conformal factor u : V → R. Discrete conformal change is
vertex scaling.

l1

l2
l3

u1

u2

u3

vertex scaling

eu2l1e
u3

eu3l2e
u1eu1l3e

u2

proposed by physicists Rocek and Williams in 1984 in the
Lorenzian setting. Luo discovered a variational principle
associated to it in 2004.
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Discrete Yamabe Flow

Definition (Discrete Yamabe Flow)
du(vi)
dt = K̄ (vi)−K (vi)

Theorem (Luo)
The discrete Yamabe flow converge exponentially fast,
∃c1,c2 > 0, such that

|ui(t)−ui(∞)|< c1e−c2t , |Ki(t)−Ki(∞)|< c1e−c2t ,

David Gu Surface Geometry

Discrete Conformality

Definition (Discrete Conformal Equivalence)
PL metrics d ,d ′ on (S,V ) are discrete conformal,

d ∼ d ′

if there is a sequence d = d1,d2, · · · ,dk = d ′ and T1,T2, · · · ,Tk
on (S,V ), such that

1 Ti is Delaunay in di
2 if Ti ̸= Ti+1, then (S,di)∼= (S,di+1) by an isometry
homotopic to id

3 if Ti = Ti+1, ∃u : V → R, such that ∀ edge e = [vi ,vj ],

ldi+1(e) = eu(vi )ldi e
u(vj )

David Gu Surface Geometry

Discrete Conformality

Discrete conformal metrics

a
b

c
v

v

ka
kb

kc
w

kc

y

x

mkc

my

mx w

diagonal switchvertex scale vertex scale
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Main Theorem

Theorem (Gu-Luo-Sun-Wu (2013))
∀ PL metrics d on closed (S,V ) and ∀K̄ : V → (−∞,2π), such
that ∑ K̄ (v) = 2πχ(S), ∃ a PL metric d̄ , unique up to scaling on
(S,V ), such that

1 d̄ is discrete conformal to d
2 The discrete curvature of d̄ is K̄ .

Furthermore, d̄ can be found from d from a discrete curvature
flow.

Remark
K̄ = 2πχ(S)

|V | , discrete uniformization.
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Main Theorem

1 The uniqueness of the solution is
obtained by the convexity of
discrete surface Ricci energy and
the convexity of the admissible
conformal factor space (u-space).

2 The existence is given by the
equivalence between PL metrics
on (S,V ) and the decorated
hyperbolic metrics on (S,V ) and
the Ptolemy identity.

X. Gu, F. Luo, J. Sun, T.
Wu, ”A discrete
uniformization theorem
for polyhedral surfaces”,
arXiv:1309.4175.
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Algorithm

Input: a closed triangle mesh M, target curvature K̄ , step length
δ , threshold ε
Output:a PL metric conformal to the original metric, realizing K̄ .

1 Initialize ui = 0, ∀vi ∈ V .
2 compute edge length, corner angle, discrete curvature Ki
3 update to Delaunay triangulation by edge swap
4 compute edge weight wij .
5 u+= δ∆−1(K̄−K)
6 normalize u such that the mean of ui ’s is 0.
7 repeat step 2 through 6, until the max |K̄i −Ki |< ε .

David Gu Surface Geometry

Genus One Example

David Gu Surface Geometry

Hyperbolic Discrete Surface Yamabe Flow
Discrete conformal metric deformation:

l1

l2
l3

u1

u2

u3

y1

y2y3

θ1

θ2

θ3

conformal factor
yk
2 = eui lk2 e

uj R2

sinh yk
2 = eui sinh lk

2 e
uj H2

sin yk
2 = eui sin lk

2 e
uj S2

Properties: ∂Ki
∂uj

=
∂Kj
∂ui

and dK=∆du.
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Hyperbolic Discrete Surface Yamabe Flow

Unified framework for both Discrete Ricci flow and Yamabe flow
Curvature flow

du
dt = K̄ −K ,

Energy
E(u) =

∫

∑
i
(K̄i −Ki)dui ,

Hessian of E denoted as ∆,

dK=∆du.

David Gu Surface Geometry

Genus Two Example

David Gu Surface Geometry

Genus Three Example

David Gu Surface Geometry

Computational Algorithms
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Topological Quadrilateral

David Gu Surface Geometry

Topological Quadrilateral

p1 p2

p3p4

Figure: Topological quadrilateral.

David Gu Surface Geometry

Topological Quadrilateral

Definition (Topological Quadrilateral)
Suppose S is a surface of genus zero with a single boundary,
and four marked boundary points {p1,p2,p3,p4} sorted
counter-clock-wisely. Then S is called a topological
quadrilateral, and denoted as Q(p1,p2,p3,p4).

Theorem
Suppose Q(p1,p2,p3,p4) is a topological quadrilateral with a
Riemannian metric g, then there exists a unique conformal map
φ : S→ C, such that φ maps Q to a rectangle, φ(p1) = 0,
φ(p2) = 1. The height of the image rectangle is the conformal
module of the surface.

David Gu Surface Geometry

Algorithm: Topological Quadrilateral

Input: A topological quadrilateral M
Output: Conformal mapping from M to a planar rectangle
φ :M → D

1 Set the target curvatures at corners {p0,p1,p2,p3} to be π
2 ,

2 Set the target curvatures to be 0 everywhere else,
3 Run ricci flow to get the target conformal metric ū,
4 Isometrically embed the surface using the target metric.

David Gu Surface Geometry



Topological Annulus

David Gu Surface Geometry

Topological Annulus

Figure: Topological annulus.

David Gu Surface Geometry

Topological Annulus

Definition (Topological Annulus)
Suppose S is a surface of genus zero with two boundaries, the
S is called a topological annulus.

Theorem
Suppose S is a topological annulus with a Riemannian metric
g, the boundary of S are two loops ∂S = γ1− γ2, then there
exists a conformal mapping φ : S→ C, which maps S to the
canonical annulus, φ(γ1) is the unit circle, φ(γ2) is another
concentric circle with radius γ . Then − logγ is the conformal
module of S. The mapping φ is unique up to a planar rotation.

David Gu Surface Geometry

Algorithm: Topological Annulus

Input: A topological annulusM, ∂M = γ0− γ1
Output: a conformal mapping from the surface to a planar
annulus φ :M → A

1 Set the target curvature to be 0 every where,
2 Run Ricci flow to get the target metric,
3 Find the shortest path γ2 connecting γ0 and γ1, slice M
along γ2 to obtain M̄,

4 Isometrically embed M̄ to the plane, further transform it to
a flat annulus

{z|r ≤ Re(z)≤ 0}/{z → z+2k
√
−1π}

by planar translation and scaling,
5 Compute the exponential map z → exp(z), maps the flat
annulus to a canonical annulus.
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Riemann Mapping

David Gu Surface Geometry

Conformal Module

Simply Connected Domains

David Gu Surface Geometry

Topological Disk

Definition (Topological Disk)
Suppose S is a surface of genus zero with one boundary, the S
is called a topological disk.

Theorem
Suppose S is a topological disk with a Riemannian metric g,
then there exists a conformal mapping φ : S→ C, which maps
S to the canonical disk. The mapping φ is unique up to a
Möbius transformation,

z → eiθ z−z0
1− z̄0z

.

David Gu Surface Geometry

Algorithm: Topological Disk

Input: A topological disk M, an interior point p ∈M
Output: Riemann mapping φ :M →mathbbD, maps M to the
unit disk and p to the origin

1 Punch a small hole at p in the mesh M,
2 Use the algorithm for topological annulus to compute the
conformal mapping.
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Multiply connected domains
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Multiply-Connected Annulus

Definition (Multiply-Connected Annulus)
Suppose S is a surface of genus zero with multiple boundaries,
then S is called a multiply connected annulus.

Theorem
Suppose S is a multiply connected annulus with a Riemannian
metric g, then there exists a conformal mapping φ : S→ C,
which maps S to the unit disk with circular holes. The radii and
the centers of the inner circles are the conformal module of S.
Such kind of conformal mapping are unique up to Möbius
transformations.

David Gu Surface Geometry

Algorithm: Multiply-Connected Annulus

Input: A multiply-connected annulus M,

∂M = γ0− γ1, · · · ,γn.

Output: a conformal mapping φ :M → A, A is a circle domain.
1 Fill all the interior holes γ1 to γn
2 Punch a hole at γk , 1≤ k ≤ n
3 Conformally map the annulus to a planar canonical
annulus

4 Fill the inner circular hole of the canonical annulus
5 Repeat step 2 through 4, each round choose different
interior boundary γk . The holes become rounder and
rounder, and converge to canonical circles.

David Gu Surface Geometry

Koebe’s Iteration - I

Figure: Koebe’s iteration for computing conformal maps for multiply
connected domains.
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Koebe’s Iteration - II

Figure: Koebe’s iteration for computing conformal maps for multiply
connected domains.
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Koebe’s Iteration - III

Figure: Koebe’s iteration for computing conformal maps for multiply
connected domains.
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Convergence Analysis

Theorem (Gu and Luo 2009)
Suppose genus zero surface has n boundaries, then there
exists constants C1 > 0 and 0< C2 < 1, for step k, for all z ∈ C,

|fk ◦ f−1(z)−z| <C1C
2[ kn ]
2 ,

where f is the desired conformal mapping.

W. Zeng, X. Yin, M. Zhang, F. Luo and X. Gu, ”Generalized
Koebe’s method for conformal mapping multiply connected
domains”, Proceeding SPM’09 SIAM/ACM Joint Conference on
Geometric and Physical Modeling, Pages 89-100.
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Topological Torus

David Gu Surface Geometry



Topological torus

Figure: Genus one closed surface.
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Algorithm: Topological Torus

Input: A topological torus M
Output: A conformal mapping which maps M to a flat torus
C/{m+nα |m,nZ}

1 Compute a basis for the fundamental group π1(M), {γ1,γ2}.
2 Slice the surface along γ1,γ2 to get a fundamental domain
M̄,

3 Set the target curvature to be 0 everywhere
4 Run Ricci flow to get the flat metric
5 Isometrically embed S̃ to the plane

David Gu Surface Geometry

Hyperbolic Ricci Flow

Computational results for genus 2 and genus 3 surfaces.

David Gu Surface Geometry

Hyperbolic Koebe’s Iteration

M. Zhang, Y. Li, W. Zeng and X. Gu. ”Canonical conformal
mapping for high genus surfaces with boundaries”, Computer
and Graphics, Vol 36, Issue 5, Pages 417-426, August 2012.
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Differen'al*Operators*and*Spaces*for*Shape*
Modeling 

!
Laplacian(Operator(and(Spectral(Processing( 

G.*Patanè,(X.D.(Gu,(X.S.(Li

Func'ons*on*3D*shapes

• Laplace?Beltrami*operator*
– Harmonic(equa<on(

• Discre<za<on(&(proper<es(

– Laplacian(eigenproblem(
• Discre<za<on(&(proper<es(

– Heat(diffusion(equa<on(
• Discre<za<on(&(proper<es(
• SpectrumAfree(computa<on(
• Heat(diffusion(distances(

• Applica'ons*
– Shape(analysis(and(comparison

Func%ons(on(3D(shapes:(discrete(case

• Define(f:M➛R(on(the(mesh(ver<ces(of(M(and(
extend(f(to(the(edges(and(faces(by(using(
barycentric(coordinates.

M

f

Laplace6Beltrami(operator

�f = 0

�f = �f

�f = div(grad)f

@tF (·, t) = �F (·, t)

• Con<nuous(case(
!

• Harmonic(equa<on(
!

• Laplacian(eigenvalue(problem((
!

• Heat(diffusion(equa<on



• We(represent(the(Laplacian(matrix(for(meshes(
and(point(sets(in(a(“unified”(way(as

Discrete(Laplacians

L(symm.,(posi<ve(semiAdefinite(
B(symm.,(posi<ve(definiteL̃ = B�1L

S%ffness(matrix

Mass(matrix(

Points

Points

Polyg*mesh

T*mesh

T*mesh

• B0area*driven0matrix0
– Linear'FEM'weights'

• [Reuter2006,Vallet2008]'

– Voronoi<cotg'weights''
• [Desbrun1999]'

–Mean<value'weights''
• [Floater2003]'

– Polygonal'weights''
• [Alexa2011]'

– Voronoi<exp'weights''
• [Liu2012]'

• B=I'(Euclidean'product'on'a'3D'shape)'
– Cotg'weights''

• [Pinkall1999]'

– Exp'weights''
• [Belkin2003<06<08]

Discrete0Laplacians

⇢
�f = 0 p 2 M
f(p) = g(p), p 2 B ⇢ M

⇢
L̃f = 0 f := (f(pi))ni=1

f(pi) = ↵i i 2 I

Harmonic0func?ons
Smooth'funcRons'with'a'(generally)'low'number'of'
criRcal'points'are'achieved'by'solving'the'Laplace<Beltrami''
equaRon'with'Dirichlet'boundary'condiRons.

Harmonic0func?ons



Harmonic0func?ons:0proper?es

s = m+M � �(M)

• The'number'of'criRcal'points'depends'on''
– the'Dirichlet'boundary'condiRons'

– the'genus'of'the'input'surface,'according'to'the'Euler'
formula'

• If'f'is'harmonic'and'has'1'min'and'1'max'(i.e.,'2'
Dirichlet'boundary'condiRons),'
– f'has'2g'saddles,'g=genus'of'M'

– f'has'a'minimal'number'of'criRcal'points'(i.e.,'2+2g)'

– saddles'are'located'on'the'topological'handles'of'M'

•

• Stability:0Numerical'instabiliRes'might'be'
introduced'by'its'discreRzaRon:'
– the'cotangent'weights'are'negaRve'if'
– the'mean<value'weights'are'always'posiRve'and'more'
stable'than'the'cotangent'weights.'

• Degree0of0freedom:'the'choice'of'the'Dirichlet'
boundary'condiRons.'

• Efficiency:0soluRon'of'a'sparse'linear'system'O(nlogn)'

• Invariance:0f'is'invariant'w.r.t.'isometries'(linear'FEM,'
Voronoi<cotg'weights).

Harmonic0func?ons:0proper?es

Harmonic0func?ons:0proper?es

• Harmonic'funcRons'with'the'same'Dirichlet'boundary'
condiRons:'different'postures'of'the'same'shape.

• Linear'finite'elements!(weak!formula,on)!yield'the!
generalized0eigenvalue0problem0
[Reuter04,Vallet08]0
!
– L0s?ffness0matrix'with'cotangent'weights'
– B'mass0matrix,'which0
• encodes'the'triangle'areas'
• defines'the'scalar'product'<f,g>B:=fTBg0on'the'space'
of'piecewise'linear'scalar'funcRons'on'the'input'
surface.

Lf = �Bf

Laplacian0eigenproblem



• The'generalized'eigensystem'of'(L,B)'
!
!
defines'a'set'of'(n<1)'non<trivial,'smooth,'shape*
intrinsic,0isometry*invariant'maps.

Laplacian0eigenfunc?ons

hxi,xjiB = �ijLxi = �iBxi,

Laplacian0eigenfunc?ons

• Smoothness:'the'first'eigenvectors'correspond'to'
smooth'and'slowly'varying'funcRons,'while'the'last'
ones'show'rapid'oscillaRons'(increasing'number'of'
criRcal'points).'

• Shape*driven0proper?es:0Laplacian'eigenfuncRons0
– are'intrinsic'to'the'input'shape'
– idenRfy'shape'features'at'different'scales'(nodal!domains).'

• Stability:0the'switch'of'the'eigenfuncRons'might'
happen'regardless'the'quality'of'the'mesh'
discreRzaRon.

Laplacian0eigenfunc?ons:0switch

21 22λ λ>

37 0.015696λ = 38 0.015493λ =

37 38λ λ>

59 60λ λ>

Laplacian0eigenfunc?ons:0robustness



Laplacian0eigenfunc?ons

• Related0work:'properRes'of'the'Laplacian'spectrum'have'
been'invesRgated'for'several'applicaRons,'such'as'
– data'reducRon'[Belkin03<08,…]'
– compression'[Karni,…]'

– discrete'differenRal'forms'[Desbrun99<05,Gu03,…]'

– local/global'parameterizaRon'[Floater,Patane04<07,Zhang05,…]'

– quadrilateral'remeshing'[Dong06,…]'

– shape'analysis'[Biasoj07,…]'

– shape'processing'&'deformaRon'[Levy06,Vallet08,Zhang07,…]'

– shape'comparison'and'correspondence'
[Reuter05<07,Rustamov07,Jain06<07,Wardetzky07,…]'

– ...

Heat0diffusion0equa?on

Kt(x,y) =
+1X

i=0

exp(��it) i(x) i(y)

N
H(x, t) = Kt(x, t) ? h

⇢
(@t +�)H(·, t) = 0
H(·, 0) = h

� i = �i i

Applica?ons
• ApplicaRons'of'the'heat'diffusion'kernel'and'distance'

– mul?*scale0representa?ons'of'funcRons'[Rosenberg97,Patane10<13]'
– shape0segmenta?on'[DeGoes08,Gebal08]'
– shape0comparison'with'HK'shape'signatures'
[Bronstein09<11,Memoli09,Ovsjanikov10,Sun09]'
• intrinsic'to'the'shape'
• isometry<invariant'

• mulR<scale'(local'vs'global'details)'

– diffusion0distances'[Coifman06]'for''
• data'matching'[Lafon06]''

• gradient'[Wang09],'criRcal'points'computaRon'[Luo09]'

– dimensionality0reduc?on'[Belkin03,Roweis00,Xiaoa10,Tenenbaum00]'

– clustering'[Chapelle03]'
– ...

• We'represent'the'Laplacian'matrix'for'meshes'
and'point'sets'in'a'“unified”'way'as

Discrete0Laplacians

L'symm.,'posiRve'semi<definite'
B'symm.,'posiRve'definiteL̃ = B�1L

F(t) := (F (pi, t))
n
i=1

⇢
(@t + L̃)F(t) = 0
F(0) = f

Patanè G., Falcidieno B. Multi-Scale Feature Spaces for Shape Processing and Analysis. IEEE International Conference on Shape 
Modeling 2010, pages 113-123. 



• On'the'space'of'funcRons'defined'on'P,'we'
consider'the'B<scalar'product'''''''''''''''''''''''''''''.'
!

• Using'the'generalized'eigensystem'of'(L,B),'the'
soluRon'is'

Heat0kernel0discre?za?on

hf ,giB := fTBg

F (·, t) = Ktf Kt := XDtX
TB

Kt = exp(�tB�1L)

• The'resulRng'discrete'heat'kernel'is'
– self*adjoint'with'respect'to'the'B<scalar'product'
– stable'to'noise,'irregular'sampling'
– isometry*invariant'
– intrinsically0scale*covariant'(i.e.,'with'no'a<posteriori'normalizaRon)'
– scale*invariant'through'a'normalizaRon'of'the'Laplacian'eigenvalues'
– higher0robustness0for0shape0comparison,'i.e.,'it'improves'
robustness'of'matching'based'on'HK'descriptors'[SHREC10]'

– consistent:'if'the'linear'FEM'mass'matrix'B'is'lumped'to'D,'then'Kt'
equals'the'kernel'Kt*=XDtXTD,'which'holds'for'L:=D<1W.

Proper?es

Kt(↵M) = Kt(M)

Kt(↵M) = K↵2t(M)

Example:0robustness

Sampling

Noise

Off*set

Deforma?on

Example:0dist.0robustness



Example:0dist.0robustness Previous0work

• Truncated0spectral0approxima?ons'of'the'HK'
consider'the'contribuRon'of'the'first'k'Laplacian'

eigenpairs'related'to'the'smaller'eigenvalues.'

• Main0mo?va?ons0
– the'evaluaRon'of'the'whole'spectrum'is'

computaRonally'unfeasible'

• O(kn)'to'O(n3),'n'points'(matrix!sparsity)'
• O(kn)'memory'for'storing'k'Laplacian'eigenvectors'(large!k)'

– the'filter'factors'exponenRally'tend'to'zero'as'the'
eigenvalues'and/or'the'Rme'parameter'increase.

Previous0work

• Approximate'the'HK'with0mul?*resolu?ve0prolonga?on0
operators0[Vaxman10]''

– using'k'eigenpairs'on'a'specific'level'of'a'mulR<resoluRve'shape'

representaRon''

– selecRng'k'according'to'Rme'and'the'shape'resoluRon'in'the'

hierarchy'

– prolongaRng'the'HK'from'a'given'resoluRon'to'the'input'shape.

Main0limita?ons

• Need'to'select'and'adapt'the'number'of'

eigenpairs'to''

– the'shape'resoluRon'in'the'hierarchy'
– the'temporal'parameter.'

• No'“exact”'computaRon'of'the'heat'kernel;'i.e.,'

extracRon'of'the'whole'Laplacian'spectrum.'

• No'esRmaRon'of'the'approximaRon'accuracy'

with'respect'to'the'selecRon'of'k'eigenpairs.'

• Focus'on'shapes'represented'as'triangle'meshes.



Aims

• Unified,'robust'discreRzaRon'and'spectrum*free0
computa?on'of'the'heat'kernel'with'respect'to'
the'discreRzaRon'of'the'
– input'3D'shape'
– Laplace<Beltrami'operator.'

• No'selecRon'of'input'parameters.'

• High'approximaRon'accuracy'10<r'(r:=5,7),'which'
can'be'adjusted'through'the'degree'of'the'Padè<
Chebyshev'raRonal'approximaRon.

Patanè G. wFEM Heat Kernel: Discretization and Applications to Shape Analysis and Retrieval. Computer Aided Geometric 
Design. In press, 2013. 

:= gi

• Compute'the'(r,r)<degree'raRonal'funcRon'crr(x)'
of'ex'with'respect'to'the'l∞<norm'

!

!

!

• compute'the'approximaRon'of'Kt:=exp(<tB<1L)

Chebyshev0approxima?on

polescoeff.

exp(x) ⇡ ↵0 +

rX

i=1

↵i(x� ✓i)
�1

exp(�tB�1L)f ⇡ ↵0f +
rX

i=1

↵i(�tB�1L� ✓iI)
�1f

Chebyshev0approxima?on

• Solve'r'sparse,'symmetric'linear'systems'

!
• Spectrum<free'computaRon'of'the'heat'diffusion'
kernel'

!
• Solu?on:'iteraRve'solvers'or'pre<factorizaRon'of'(L,B).'
• Proper?es'
– Independency'of'the'shape'and'Laplacian'discreRzaRon''
– No'input'parameters'(degree!r!fixed).

(tL+ ✓iB)gi = �Bf

Ktf ⇡ ↵0f +
rX

i=1

↵igi

• Accuracy0For'a'(r,r)'Chebyshev'polynomial'approx.,0
– soluRon'of'r'sparse'and'symmetric'linear'systems'(e.g.,'
r=5,7)'

– l2'error'between'eC'and'its'raRonal'approximaRon'is'
lower'than'σrr≈10<r'(unif.!ra,onal!Cheb.!constant).'

• Stability0
– The'Chebyshev'approx.'might'be'unstable'if'||tC||2'is'
large.'

– From'the'upper'bound'

a'well<condiRoned'matrix'B'guarantees'that'||tB<1L||2'is'
bounded'and'low.

Numerical0accuracy0&0stability

ktB�1Lk
2

 t�
max

(L)��1

min

(B)



2(tL+ ✓iB)

Example:0numerical0stability
Kt(pi, ·)

dB(pi,pj) := kKt(pi, ·)�Kt(pj , ·)kB

Kt(pj , ·)

pi

pj

F(P)

P

k · k2

Kt(pi, ·)

Kt(pj , ·)

k · kB

Heat0diffusion0distance0

Heat0diffusion0distance0

• The'B<scalar'product'induces'the'diffusion'
distance

dB(pi,pj) := kKt(pi, ·)�Kt(pj , ·)k2B
=

nX

l=1

exp(�2�lt)|hxl, ei � ejiB |2

• Previous'work
d(pi,pj) =

nX

l=1

exp(��lt)|hxl, ei � eji2|2

Heat0diffusion0distance0

• The'B<scalar'product'induces'the'diffusion'
distance

dB(pi,pj) := kKt(pi, ·)�Kt(pj , ·)k2B
=

nX

l=1

exp(�2�lt)|hxl, ei � ejiB |2



d2B(pi,pj) = eTi BK2tei � 2eTi BK2tej + eTj BK2tej

Heat0diffusion0distance0

eTi BK2tej Chebyshev0approxima?on

• The'spectrum<free'computaRon'of'the'heat'
diffusion'distance'is'based'on'the'Chebyshev'
approximaRon'of'the'heat'kernel.'

• Expressing'the'diffusion'distance'in'terms'of'K2t'
and'B

n

Example:0comput.0cost

Example:0comput.0cost
Table 1: Timings (in seconds, Fig. 9(c)) for the evaluation of the heat di↵u-
sion kernels on 3D shapes with n points, approximated with k = 500 eigenpairs
(Eigs) and the Chebyshev approximation (Cheb.). Column ’⇥’ indicates the
number of times the computational cost is reduced. Tests have been performed
on a 2.7 GHz Intel Core i7 Processor, with 8 GB memory.

Acquarius Fig. 9(a) Neptune Fig. 9(b)

n Eigs Cheb. ⇥ n Eigs Cheb. ⇥
5K 30.06 0.26 115 10K 59.65 0.50 119
25K 97.25 1.83 53 30K 111.28 1.78 62
35K 130.39 2.61 49 50K 176.47 3.21 54
50K 173.78 3.60 48 100K 372.16 7.44 50

Torus Fig. 9(c) Julius Fig. 9(d)

n Eigs Cheb. ⇥ n Eigs Cheb. ⇥
2K 12.00 0.01 1200 2K 18.47 0.08 230
6K 33.28 0.45 73 7K 35.89 0.37 97
26K 100.88 2.89 34 22K 82.47 1.42 58
49K 140.00 5.14 33 43K 173.52 3.71 46
58K 186.06 7.92 23 50K 174.89 4.34 40

Modalities for Physiological Human Articulation”. 3D shapes
are courtesy of the AIM@SHAPE Repository.
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wFEM0HK0&0shape0comparison

• We'have'compared'HK<'and'wFEM'HK<based'
shape'descriptors.''
• Data0set:'1184'shapes'(13'transf.)

Transformations



• Comparison'results'for'5'methods.'
!

• DHK1:'[BBOG10]'
• DHK2:'Ours'
• SHK1*2:'[SOG09]

wFEM*0vs0HK*based0shape0descr.
From%Surface,%to%Volume,based%Shape%Modeling%and%

Analysis
!

sŽůƵŵĞƚƌŝĐ-approxima1on-

and-main-approaches

G.%Patanè,-X.D.-Gu,-X.S.-Li

Volumetric%approxima@on

• Volumetric%approxima@on%
– Piecewise-linear-approxima1ons-

– Radial-basis-func1ons-
– Harmonic-volumetric-mapping-

–Moving-least$squares-

– Constrained-(topology$driven)-approxima1on-

– Local-approxima1on-with-RBFs-

• Applica@ons%
– Image-&-data-resampling-

– Shape-correspondences-
– Biomedical-applica1ons

Volumetric%approxima@on%,%Mo@va@ons

• Shape%modeling%handles-a-3D-shape-as-a-2$
manidold,-which-describes-the-boundary-
shape-(e.g.,-mesh,-point-set,-…).-

• A-volumetric-surface%representa@on-is-more-
suited-to-handle-the-shape-complexity.-

• A-volumetric-signal%representa@on-is-more-
suited-to-analyze-complex-phenomena-
measured-on-the-input-shape.-

• Volumetric-approxima1on-of-shape-geometry-
and-scalar-func1ons-will-be-handled-using-a-
signal,like%approach.--

• …



Volumetric%approxima@on%,%Mo@va@ons

We-will-address-
• the%integra@on-of-surface$-and-volume$based-shape-informa1on-for-

the-approxima1on-of-scalar-func1ons-defined-on-surfaces-
• different-volumetric%approxima@ons-

– piecewise-linear-approxima1on-
– smooth-approxima1on-
– constrained-approxima1on-
– local-approxima1on-

• the-use-of-several-approxima@on%constraints;-e.g.,--
– smoothness-condi1ons-
– interpola1ng-constraints-
– preserva1on-of-cri1cal-points-and-feature-values-at-both-a-local-

and-global-level.

• Input:-a-discrete-map-f:M➛R,-defined-on-a-set-
M:={pi}i=1n-of-points-of-Rd,-which-have-been-
sampled-on-
– a-2D-image-
– a-3D-shape--
– a-volumetric-domain-
– d$dimensional-data-for-M⊆Rd.

Approxima@on%problem

f:M➛RF:R2➛R

• Output:%compute-F:Rd➛R-that-locally-
interpolates-or-approximates-the-f$values.

f:M➛RF:R3➛R
f:M➛RF:R3➛R

Mo@va@ons
• Approxima1ng-discrete-maps-on-Rd-is-important-for--
– providing-fast-computa1on-of-volumetric-(e.g.,-
Laplacian-eigenmaps)-shape-descriptors

Mo@va@ons

• resampling-images-and-volumetric-data
f:M➛R f:M➛R

F:R3➛RF:R2➛R

M⊆R3M⊆R2



Mo@va@ons

Input PL function 

on T-mesh  

Smooth volumetric 

function     

?

• extending-maps-from-shapes-to-volumes • iden1fying-correspondences-between-shapes-
• compu1ng-the-cross-shape-parameteriza1on

Volumetric%mapping%(both-surface-
points-and-interior-points)

Mo@va@ons

Mo@va@ons
• studying-phenomena-measured-on-surfaces-
and-that-act-in-the-surrounding-space.

Desired%proper@es

• The-volumetric-approxima1on-F:R3➛R-of-f:M➛R-should-be-
– locally%computed--
– independent%of%%

• any%underlying%tessella@on%and-parameteriza@on%domain%(meshless'
approxima.on)-

• dimension-of-the-input-data-

– accurate%%
• by-combining-interpola1ng-and-least$squares-constraints-on-the-f$
values-(constraints’'flexibility)-

• by-improving-the-accuracy-of-linear-precision-and-MLS-methods-with-
polynomial-basis-func1ons-(higher'extrapola.on'capabili.es)-

– computa@onally%efficient-through-the-solu1on-of-a-small-and-
well$condi1oned-linear-system.-



Desired%proper@es%

• The-volumetric-approxima1on-F:R3➛R-of-f:M➛R-
– at-global%level%

• preserves-the-features-of-f:M➛R;-e.g.,-cri1cal-points,-f$
values,-smoothness,-harmonicity,…-
• induces-a--correspondence-with-its-surface$based-map-f-

– at-local%level%
• preserves-the-details-of-f-at-a-given-accuracy-

– at-computa@onal%level-
• is-efficiently-computable;-e.g.,-selec1on-of-RBFs,-f$values,-
etc.

Main%approaches

• Piecewise,linear%approxima1ons-with-generalized-
barycentric%

• Smooth-approxima1ons%
– Par11on-of-the-Unity-
– Radial-Basis-Func1ons-
–Moving-Least$Squares-

• Local-approxima1on-with-RBFs-
• Constrained%approxima1ons-
– Cri1cal-points’-preserva1on

Main%approaches
• Piecewise,linear%approxima@ons:%%

– Barycentric'coordinates:-[Rustamov11]--
• Smooth%approxima@ons:%

– Radial'basis'func.ons:'[Aronszajin50,Dyn86,Micchelli86,-
Poggio90,Wendland95],-[Morse01,Patanè06,Shen05,Turk02],-
[Adams09,Weiler05,Jang04$06]-

– Implicits:-[Boomenthal97,Hart99,Pasko95/98]-
– Volume'parameteriza.on:-[Li10,Mar1n08]-
–Moving'LeastASquares:
[Adamson03,Alexa01,Amenta04,Fleishman03,Guennebaud07,Jin0
9,Levin98,Pauly02$03],-[Carr01,Dey05,Shen04,Walder06,Xie04]-
– Par..on'of'the'Unity:%[Ohtake03/05]-

• Constrained%&%local%volumetric%approxima@ons:-[Jin09,Patanè09/12]

Barycentric-
coordinates-of-p

Linear%precision%methods

• Since-f:M➛R-is-known-at-the-ver1ces-of-the-T$
mesh,-we-consider-the-func1on-F:R3➛R

Proper@es
Lagrange%property

Par@@on%of%the%Unity

Affine%combina@on



• Main-proper@es-of-the-volumetric-approxima1on-
with-barycentric-coordinates-
– linear-precision-
– piecewise-linear-con1nuity-
– fast-computa1on-
– …-

• Applica@ons-
– computa1on-of-volumetric-shape-descriptors-through-
interpola1on-of-surface$based-Laplacian-eigenfunc1ons--

– surface-and-volume-parameteriza1on.

Generalized%barycentric%coordinates

• Compute-the-func1on-F:R3➛R-that-sa1sfies-the-
interpola@ng%condi@ons

Basis-func1on-centered-at-pi

Kernel-func1on

Volumetric%approxima@on%with%RBFs

Volumetric%approxima@on%with%RBFs

• The-solu1on-F-is-a-linear-combina1on-of-RBFs-
centered-at-the-points-of-M

Unknown-coefficients

Volumetric%approxima@on%with%RBFs

• The-kernel-proper1es--(e.g.,-compact-support,-
posi1ve-definiteness,-etc)-determine-the-
– proper1es-of-the-Gram-matrix;--

• sparsity-
• symmetry-
• posi1ve$definiteness-

– proper1es-of-the-solu1on-(e.g.,-uniqueness)-
– selec1on-of-the-solver;-e.g.,--

• direct-solvers-
• itera1ve-solvers-(e.g.,-conjugate-gradient←Gram-matrix-is-
symmetric-and-posi1ve-definite).



• Select-a-set-C-of-centers;-e.g.,-apply-PCA,-
sparsifica1on,-clustering,-…-

• Consider-the-corresponding-RBFs-and-
approxima1on-
!

!

• Minimize-the-least$square-error

Volumetric%approxima@on%with%RBFs

LS%error

• Cons-
– center-selec1on-
– 1me$consuming-update-of-the-approxima1on-
– …--
!
!

• Pro-
– reduc1on-of-the-noise-effects-on-the-final-approxima1on-
– reduc1on-of-the-computa1onal-cost,-which-is-propor1onal-
to-the-number-of-selected-centers-instead-of-input-points-

– …

Volumetric%approxima@on%with%RBFs

Gram-matrix

LS%error

Weighted%LS%

MLS%approxima@on

• F(p)-is-a-polynomial-func1on-of-degree-at-most-r-
!

!

• The-normal-equa1on-depends-on-the-evalua1on-
point-p

Pol.-Gram-matrix Weights

MLS%approxima@on

Input-f$values

⇥
�TW (p)�

⇤
↵ = �TW (p)f



• -Approxima1on-with-polynomial-func1ons-
– choice-of-the-polynomial-degree?--
• usually-degree-r=2-or-r=3-in'x,'y,'z-
• numerical-instabili1es-with-higher-polynomial-degrees-
• growth-of-the-number-of-unknowns-with-r-

– no-use-of-interpola1ng-constraints-
• polynomial-degree-is-aApriori-fixed-
• number-of-local-constraints-depends-on-the-sampling-
density-
• only-least$squares-constraints-!-no-interpola1ng-
condi1ons-

– …

MLS%approxima@on Example

Example Example

�27

[Input] [Loc.%ap.] [APSS] [RIMLS]



Constrained%volumetric%approxima@on

• Idea:-emphasis-on--
– cri@cal%points’%preserva@on;-i.e.,-preserva1on-of-the-
topological-behavior-of-the-input-scalar-func1on-

– selec1on-of-a-generally-low-number-of-interpola1on-
condi1ons-(center%selec@on)-

– genera1on-of-a-hierarchy-of-surface$-and-volume$based-
approxima1ons-of-the-input-map.-

• The-approxima1on-error-can-be-locally-reduced-with-
addi1onal-interpola1ng/least$squares-constraints.

Patanè G, Spagnuolo M., Falcidieno B. Topology- and error-driven extension of scalar functions from surfaces to volumes  ACM 
Transactions on Graphics, 2009. SIGGRAPH 2010, Los Angeles − USA

Topology,driven%approxima@on

Input PL 

function 

on T-mesh  

Smooth 

volumetric 

function     

Global 

support    

same critical 

points

Proper@es

• The-topology$driven-approxima1on-
– at-global%level%

• preserva1on-of-topological-features-(cri1cal-points)-of-f:M➛R-
• hierarchy-of-surface$based-approx.-and-volumetric-extensions-of-f-

– at-local%level%
• preserva1on-of-details-of-f-at-a-given-accuracy-

– at%computa@onal%level%
• efficiently-selec1on-of-of-RBF-centers-used-by-the-approxima1on.-

• Related%work%
–Morse-theory:-[Banchoff67,Bajaj98,Biasos09,Bremer04,-
Dey06,Edelsbrunner04$06,Hart98,Liu07,Milnor63,Ni04,-
Pascucci04,Patane09,Weber02]

Topology,driven%approxima@on

• Problem%statement:-Given-a-PL-scalar-func1on-
f:M➛R,-extend-f-to-a-volumetric-func1on-g:R3➛R-
such-that-
– g-is-smooth:-g∈Ck----
– g-is-globally-supported-(topologyAdriven'extension)-
– the-PL-scalar-func1on-h:M➛R,-with-h(pi)=g(pi),-i=1,...,n,-

• has-a-“smooth”-behavior-on-M--
• has-the-same-cri1cal-points-of-f-(topologyAdriven'
approxima.on)-

• preserves-the-details-of-f-within-a-given-error.



Idea,behind%1D%case Idea,behind%1D%case

•Minima 

•Maxima 

•Saddles

Idea,behind%1D%case Idea,behind%1D%case



Idea,behind%1D%case Topology,driven%approxima@on

Approximation 

hierarchy

Stop condition?

Topology,driven%approxima@on

• Varia1on-of-the-cri1cal-points.

Itera@on%k

Num.%
cri@cal%%
points%of%
f(k)

•Minima%

•Maxima%

•Saddles

Nullity relation

Topology,driven%approxima@on

• The-number-and-posi1on-of-the-selected-centers-
(interpola1on-condi1ons)-depend-on-the-cri1cal-
points-and-behavior-of-the-input-func1on.

Num. iterations

Num. RBFs

Num. iterations

Approx. 

error



Example Topology,driven%approxima@on

• Computa@onal%cost:-at-each-step-k,-
– cri1cal-points’-classifica1on:-O(n),-with-n-ver1ces-
– matrix-construc1on:-O(rk2),-with-rk-number-of-selected-
centers-

– itera1ve-solu1on-of-the-linear-system:-O(rk2)--

• Proper@es:%The-topology$driven-approxima1on-is-
computed-through-an-itera1ve-process,-which%
– converges-in-a-finite-number-of-steps-
– avoids-stop-condi1ons-based-on-thresholds-
– can-be-applied-to-n$dimensional-data-equipped-with-a-map-
– can-be-coupled-with-error$driven/weak-constraints

From Cross-Surface Mapping  
to Cross-Volume Mapping 

G. Patanè, X.D. Gu, X.S. Li 

Cross-shape Mapping: From Surface to Volume 

!  Cross-shape mapping 
!  A bijective map between two given shapes 
!  A modeling technique to obtain the parametric representation on 

suitable domain, or to establish one-to-one correspondence 
!  Can facilitate many tasks in graphics, vision, visualization 

Main Contents: 
1)  Cross-surface mapping computation 
2)  Cross-volume mapping computation 
3)  An example : Polycube mapping!



Cross-surface Mapping 

!  Criteria  
!  Bijectivity: no flip-overs, no degeneracy 
!  Mapping Distortions: length, angle, and area/volume distortion 
!  Feature/Structure Alignment 

Computing Cross-Surface Maps 
!  Parameterization of surface patches (topological disks) have been 

extensively studied, many effective algorithms developed  
"  [Floater and Hormann 2005], [Sheffer et al. 2006], [Hormann et al. 2007] 

!  Solid objects widely exist in scientific applications; their boundaries 
are closed surfaces and may possess nontrivial topology 
"  We discuss the mapping between closed surfaces, and then 

extend it to volume shapes 
 

 
 
 
 

Cross-surface Mapping (Genus-0 Surfaces) 
!  Explicitly solving a deformation, !:"1→"2, 

#  Effective for shapes differ by small deformation 
$  Local minima (good initial estimate important); non-linear geometric 

constraints expensive to enforce 
!  Implicitly composing two parameterizations over a common domain, 

g:D→M1,h:D→"2,!=ℎ∙ %↑−1 .  
!  Popular common domains: e.g. sphere, cube, polycubes… 

 

Spherical Parameterization of Genus-0 Surface 

Image from [S. Wan, T. Ye, M. Li, H. Zhang, 
X. Li, “Efficient Spherical Parameterization 
Using Progressive Optimization,” Proc. of 
Computational Visual Media Conference, 
pp. 170-177, 2012.] 

!  Applications: 
!  Inter-surface Mapping 
!  Spherical Harmonics Decomposition 

Cross-surface Mapping (High-genus Surfaces) 

!  Explicit deformation: challenging when with multiple handles 
!  Implicit composition of parameterizations  

1)  Composing local parameterization through divide-and-conquer 
2)  Composing two global parameterizations on a common domain 

Genus-2!

Genus-3!



Cross-surface Mapping (High-genus Surfaces) 

!  Explicit deformation: challenging when with multiple handles 
!  Implicit composition of parameterizations  

1)  Composing local parameterization through divide-and-conquer 
2)  Composing two global parameterizations on a common domain 

Genus-2!

Genus-3!

D & C: General Pipeline 

A general computation pipeline: 
1)  Partitioning: Consistently segment the two surfaces into simple 

patches 
2)  Local Mapping: Compute cross-patch mappings between 

corresponding local patches 
3)  Global Composition: Stitch the local maps together and apply some 

post-processing to remove the artifacts 

D & C: Partitioning 

1. Manual Design 

[Decarlo and Gallier, GI’96]  
[Gregory et al. CA’98] 
[Zockler et al. VC’00] 

Dual Graphs of the two Decompositions  
 % Isomorphic 

Consistent Decomposition 

2. Land Markers + Auto Boundary Tracing 

[Schreiner et. al. SIG’04] 
[Kraevoy and Sheffer SIG’04] 

[Lee et. al. SIG’99] , [Kanai et al. VC’98], [Praun et al. SIG’01],   
[Kraevoy and Sheffer SIG’04], [Schreiner et al. SIG’04] [Kwok et al. TVCG’11] 

D & C: Data Partitioning 

1. Manual Design 

[Decarlo and Gallier, GI’96]  
[Gregory et al. CA’98] 
[Zockler et al. VC’00] 

Dual Graphs of the two Decompositions  
 % Isomorphic 

Consistent Decomposition 

2. Land Markers + Auto Boundary Tracing 

[Schreiner et. al. SIG’04] 
[Kraevoy and Sheffer SIG’04] 

[Lee et. al. SIG’99] , [Kanai et al. VC’98], [Praun et al. SIG’01],   
[Kraevoy and Sheffer SIG’04], [Schreiner et al. SIG’04] [Kwok et al. TVCG’11] 



A Topology-Driven Auto Consistent Decomposition 

!  A Topology-driven Top-Down Approach: Canonical Pants Decomposition:  
 [Li, Gu, Qin, “Surface Mapping using Consistent Pants Decomposition,” 15(4):558 – 571, TVCG 2009] 

A uniform decomposition scheme for surfaces with non-trivial topology 
"  a genus-g surface with b boundaries % 2g+b-2 Pants Patches 
"  dual graphs are simple : every node is valence-3 

Pants Decomposition 

A pants patch =   
a topo sphere with 3 holes 

      [Li, Gu, Qin, “Surface Mapping using Consistent Pants Decomposition,” TVCG 2009] 
      [Zhang, Li, “Optimizing Geometry-aware Pants Decomposition,” PG2012] 

A Topology-driven Top-Down Approach: Canonical Pants Decomposition 

Canonical Pants Decomposition 

1.   Decompose a surface % base patch + handle patches!
2.   Decompose base patch and handle patches to pants !

“legs”!

“waist”: 
Topologically: bound the handle 
Geometrically: short, smooth loop 

 [Li, Gu, Qin, “Surface Mapping using Consistent Pants Decomposition,” TVCG 2009] 

Canonical Pants Decomposition Results 



Enumerating Pants Decompositions 

•  A compact orientable surface admits infinitely many topologically 
different Pants Decompositions. [Hatcher et.al 2000] 

Topological Operations 
We can use two operations to traverse among topologically 

different Pants Decompositions 
1)   Simple move (S-move) 

2)   Associativity Move (A-move)�

 [Zhang, Li, “Optimizing Geometry-aware Pants Decomposition,” PG2012]!

Topologically Consistent Surface Decomposition 

      [Li, Gu, Qin, “Surface Mapping using Consistent Pants Decomposition,” TVCG 2009] 
      [Zhang, Li, “Optimizing Geometry-aware Pants Decomposition,” PG2012] 

With these two 
operations, 
We can enumerate 
the space of pants 
decompositions. 
 
Geometric 
properties can be 
incorporated in the 
search of a 
desirable 
decomposition. 

Step 2: Local Mapping 

S1 and S2  (genus # = g, boundary # = b)!

Consistent pants sets:   (χ= 2g-2+b)!
    {P1

1, P1
2, …, P1

x} and!
!{P2

1, P2
2, …, P2

x}!

Consistent pants decomposition!

match the corresponding pairs of pants!

Piecewise surface mapping!



D & C: Local Mapping 

!  Slice each pants patch into 2 
topological hexagons 

!  Get the cross-patch mapping by 
composing the parameterizations on 
the planar hexagon domains 

!  Simple dual graph % consistent 
boundary mapping condition easy to 
enforce 

Surface Mapping Results 

Some Cross-Surface Mapping Results Cross-surface Mapping (High-genus Surfaces) 

!  Explicit deformation: challenging when with multiple handles 
!  Implicit composition of parameterizations  

1)  Composing local parameterization through divide-and-conquer 
2)  Composing two global parameterizations on a common domain 

Genus-2!

Genus-3!



Compose Global Map via Fundamental Domains 

1)  Compute a set of 2g loops (a canonical homology basis) 
2)  Slice surface open to a disk (4g-gon) 
3)  Parameterize sliced surfaces over the planar disk 
4)  Compose the parameterizations 

Slice surfaces open % fundamental domains % parameterization 

!  Global Harmonic Mapping under Uniformization Metric: 
      [Li et al., “Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology,” TVCG 2008] 

Solving a Global Harmonic Mapping 

Goal: 
To solve a quasi-conformal map that minimizes the stretching 
 

Difficulty:  
  Direct optimization always gets trapped by local minima 
 
 

Approach: (Uniformization Metric) 

[Li et al., “Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology,” TVCG 2008] 

1.  Conformally deform the target surface to its uniformization metric  
!  for surfaces with non-trivial topology (g>=1) 

 % constant non-positive curvature everywhere 
2.  Under this metric, reduce harmonic energy 

!  The global harmonic map is unique in each homotopy class 
[Schoen and Yau 78] 

 

Some Mapping Results 

[Li et al., “Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology,” TVCG 2008] 

Video: G=1, Star % Rocker-arm Video: G=2, Vase % 2-Torus 

Local Optima vs. Global Optima 
Optimization under  
Euclidean Metric: 

Optimization under 
Uniformization Metric 



Local Optima vs. Global Optima Cross-volume Mapping 

X. Li, X. Guo, H. Wang, Y. He, X. Gu, H. Qin, “Harmonic Volumetric Mapping for Solid Modeling 
Applications”, in Proc. of ACM Solid and Physical Modeling Symposium (SPM), pp. 109-120, 2007. 

!  To establish a bijective map between two given solid shapes 
! Boundary condition: boundary surface mapping 

Volumetric Harmonic Mapping 

21: MMf →

!
"
#

=

=Δ

)()(
0
pgpf

f

1

1

Mp
Mp
∂∈

∈

2

2

2

2

2

2

zyx ∂
∂

+
∂
∂

+
∂
∂

=Δ

such that!

where!

A harmonic (volumetric) map: 

Physical Intuition: 
!  To deform a solid rubber whose 

boundary deformation is determined 
by a surface mapping.  
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A harmonic map !↓) (*) can be approximated by 

A Physical Model: 
 

!  Harmonic field  & an electrical potential field 
!  The potential at a point, , is determined by a set of electronic particles 
!  Degree-of-Freedom: their positions  and charge amounts  
!  Constraints: the boundary mapping  



Solving these 3 Electrical Potential Fields 

Sample ns singularity points outside the model domain 
Sample nc collocation points on the model boundary surface 

Solve a linear system  

The system is dense and usually ill-conditioned 
 
Approaches to improve numerical stability: 
!  SVD, with insignificant eigenvalues 

truncated  
!  Adaptively inserting new singularity points 

and removing least effective ones 
!  Add a regularization term, solved by LU 

Solve this by a collocation method: 

Feature Alignment 

To support matching of corresponding feature points, curves, or iso-
surfaces 

!  Treated as soft constraints, directly added into the system 

Feature Alignment 

To support matching of corresponding feature points, curves, or iso-
surfaces 

!  Treated as soft constraints, directly added into the system 

Volumetric Mapping Results 



Volumetric Mapping Results (cont.) Volumetric Mapping Results (cont.) 

Depth value!
Color-coding!

Volumetric Mapping Applications: 
      -- Meshing 

Regular domains 
(polycubes) 

Complicated!
 objects!

Regular mesh:!
desired for geometry 
processing and 
physically based 
computation !

transfer 

[Li et al. SPM’07] 

Mapping Complex Volume via Divide-and-Conquer 

!  For solid shapes with complex geometry or inhomogeneous 
structures 
! Global harmonic mapping 

! Bijectivity usually not guaranteed  
! Complex feature structures difficult to handle 

! Mapping via Divide-and-Conquer 
1)  Decompose the solid into solvable sub-parts 
2)  Solve individual sub-mappings locally 



Star Decomposition for Volume Shapes 

[Yu and  Li, “Computing Guarding and Star Decomposition,” Computer Graphics Forum, 2011] 

!  Bijective Harmonic Parameterization can be constructed on star-shaped regions 
[Xia et al. “Parameterization of Star Shaped Volumes Using Green's Functions,” GMP’10]  

Mapping Complex Volume via Divide-and-Conquer 

!  For solid shapes with complex geometry or inhomogeneous 
structures 
! Global harmonic mapping 

! Bijectivity usually not guaranteed  
! Complex feature structures difficult to handle 

! Mapping via Divide-and-Conquer 
1)  Decompose the solid into solvable sub-parts 
2)  Solve individual sub-mappings locally 
3)  Need to consider the smoothness of the transitions across partitioning 

boundaries % Harmonic maps only offer +↑0  continuity 

A Biharmonic Volumetric Mapping Model 

: the surface normal on the domain boundary 
: the outward normal derivative 
: surface mapping from 
: derivative along the normal direction on each boundary points 

To solve! Φ:Ω→"2222Ω,"⊂ ,↑3 !

-!!

.Φ/.- !

!!! .Ω22012." ! !

%!!

Φ=(3↓4 , 3↓5 , 3↓6 ):""along"4,25,26"axis"direc/ons,"each" 3↓) "is"a"biharmonic"func/on!"axis"direc/ons,"each" 3↓) "is"a"biharmonic"func/on!

{92222222 :↑4 Φ=0,2222222222222222in2Ω, 2222222Φ=f,2222222222222222222on2.Ω, 22222 .Φ/.- 
=%,22222222222222221-2.Ω,222  !

Φ

!!!

MFS Kernels for Biharmonic Function 

Solve each               using Methods of Fundamental Solutions (MFS)!

A biharmonic Function 3(x) can be approximated by: 
3(;,<,=,>)=2∑@=1↑-↓A ▒ℎ↓@  C(D↓@ ,>)+∑@=1↑n↓A ▒E↓@  F(D↓@ ,>)!

!  Kernels: 
!  C(D↓@ ,>)=2 1/4G| =↓@ −>|   : harmonic kernel 
!  F(=↓@ ,>)=2 | =↓@ −>|/8G      : biharmonic kernel 

!  Singularity Points 
!  =={ D↓1 ,…, D↓-↓A  }      : a 3n↓A -D vector, indicating the singularity 

points sampled outside Ω!
!  D↓@ = [I↓3@−2 , I↓3@−1 , I↓3@ ]↑K ∈ ,↑3  is the 3D position of a singularity point  

!  Unknown:
!  ;,< : harmonic and bihamronic coefficients to solve  : harmonic and bihamronic coefficients to solve 



Biharmonic Volumetric Mapping Examples 

Solve each               using Methods of Fundamental Solutions (MFS)!

Harmonic Map Biharmonic Map Ω "  

Biharmonic Volumetric Mapping Examples 

Solve each               using Methods of Fundamental Solutions (MFS)!

[Xu et al. “Biharmonic Volumetric Mapping using Fundamental Solutions,” TVCG, 19(5): 
787-798, 2013] 

Biharmonic Volumetric Mapping Examples 

Solve each               using Methods of Fundamental Solutions (MFS)!

Polycube Parameterization 



Polycube Parameterization: Definition & Motivation 
!  A"Polycube"is""

! A"shape"composed"of"a"set"of"cubes"that"are"a;ached"face"to"face,"or"
! more"formally,"a"3D"manifold"that"is"an"orthogonal"polyhedron."

!  A"polycube"parameteriza/on"of"a"(surface/solid)"model"M"is"a"bijec/ve"
map"from"a"polycube"(surface/solid)"P"to"M"

!  Polycube"as"a"desirable"parametric"domain:"
"  Regularity"
desirable"for"func/onal"design"and"mesh"genera/on""
"  Good"approxima/on"to"model"
lowlyIdistorted"(less"stretching)"parameteriza/on""
""!  Many Applications: 
!  Spline construction  
!  Hex-meshing 

Contents 
!  A"Brief"Review"on"Exis/ng"Methods"
!  A"Polycube"Surface"Mapping"Algorithm"
!  A"Polycube"Volumetric"Mapping"Algorithm"

Related Work: Polycube Construction 

!  Manual/Semi-automatic Polycube Construction: 
!  [Tarini et al. SIG’04]: Interactive Cube Assembly 
!  [Wang et al. SPM’07]: CSG 
!  [Li et al. SMI’10]: Surface Segmentation for Generalized Polycube 

!  Automatic Polycube Construction: 
!  [Lin et al. GMP’08]: Reeb-graph 
!  [He et al. SMI’09]: Horizontal scanning 
!  [Gregson et al. SGP’11]: Rotational-driven Deformation 
!  [Yu et al. SPM’13]: Homotopic Morphological Optimization 

Related Work: Polycube Mapping 

!  Polycube Surface Mapping 
!  [Tarini et al. SIG’04]: Spatial projection 
!  [Lin et al. GMP’08, Xia et al. I3D’11, Li et al. SMI’10, Wan et al. SMI’11]: Surface 

partitioned into topological disks + disk parameterization 
!  [He et al. SMI’09]: Surface partitioned into patches with holes + discrete Ricci flow  
!  [Wang et al. SPM’07]: Global surface-polycube mapping by composing intrinsic global 

parameterization on the fundamental domain 



Related Work: Polycube Mapping 

!  Polycube Surface Mapping 
!  [Tarini et al. SIG’04] 
!  [Lin et al. GMP’08, Xia et al. I3D’11, Li et al. SMI’10, Wan et al. SMI’11] 
!  [He et al. SMI’09] 
!  [Wang et al. SPM’07]!

! Polycube Volumetric Mapping 
!  Harmonic Mapping  

!  FEM: [Xia et al. SMI’10, Han et al. SPM’10, Li et al. TVCG’13] 
!  MFS: [Li et al. SPM’07, Li et al. SMI’10] 

!  Bi-harmonic Mapping 
!  [Xu et al. TVCG’13] 

What is a Desirable Polycube Map? 

!  Effective automatic polycube construction remains challenging: 
     Need to solve:  

"  A good polycube domain 
"  A low-distortion mapping 

!  A Good Polycube Domain: 
!  Composed by only a few cubic subparts, i.e, few corner points 

(singularities) 
!  Capturing shape features 

Polycube"domain"shape"determines:"
%  boundary"surface"mapping,"quality"of"the"boundary"quadImesh"
%  consequently,"quality"of"the"constructed"hexImesh"

Polycube Domain Construction 

•  Geometric"Similarity"VS"Domain"Simplicity"
'  Simpler"domain"%"fewer"singulari/es"
'  More"complex"domain"%"be;er"approximate"shape"geometry"

Polycube Mapping via Horizontal Scanning 

[He et al. SMI’09]!
1)  Partition the model using a sweeping horizontal plane!
2)  Construct axis-aligned polygons to approximate patch boundaries!
3)  Flatten the surface patch and polycube patch !
4)  Map the flattened patch pair using planar harmonic maps!
% Could generate well-approximated polycube domain, but with many 
singularities!



A Simultaneous Optimization on PC Domain Shape 
and Surface Mapping  
[Wan"et"al."“A"TopologyIpreserving"Op/miza/on"Algorithm"for"Polycube"Mapping,”"

SMI’11]"

Polycube"domain"shape"op/miza/on"guided"by"mapping"distor/on"

!  Aims"to"op/mize"both"

1)  Polycube"Domain"Shape"(without"adding/dele/ng"corners)"
2)  Polycube"Surface"Mapping"

Polycube Construction by Voxelization 

Discrete"harmonic"mapping"energy"for"patch" "↓L ":"
"""on"MIth"axis:" C↓L↑M (!)2=∑(N↓) ,2 N↓@ )∈O( "↓L )↑▒1/2 P↓)@ (!↑M (

N↓) )− !↑M (N↓@ ))↑2  "
where P↓ij  is the well known cotangent weight ([Eck et al.’95]) 
           N↓) , N↓@  are vertices, !↑M  is the M-th component of the map ! -th component of the map !  

'  When each facet’s corner mapping is determined:!
'  Partition M and P into sub-patches: !↓L :"↓L →Q↓L !

•  Total harmonic energy: C2=∑M=1,…,3,22L↑▒C↓L↑M (!)  

Piecewise Polycube Surface Maps 

Discrete"harmonic"mapping"energy"for"patch" "↓L ":"
"""on"MIth"axis:" C↓L↑M (!)2=∑(N↓) ,2 N↓@ )∈O( "↓L )↑▒1/2 P↓)@ (!↑M (

N↓) )− !↑M (N↓@ ))↑2  "
where P↓ij  is the well known cotangent weight ([Eck et al.’95]) 
           N↓) , N↓@  are vertices, !↑M  is the M-th component of the map ! -th component of the map !  

!  When the mapping of each facet’s corners is determined: 
!  We can trace the shortest paths to connect corners 
!  M and P partitioned into sub-patches: !↓L :"↓L →Q↓L  

•  Total harmonic energy: C2=∑M=1,…,3,22L↑▒C↓L↑M (!)  

Piecewise Polycube Surface Maps (cont.) 

We also measure the area-stretching of the map !: !: !
!

The"final"mapping"energy"to"minimize:"
"""""""""""O(!)=2C(!)2+R2S(!)"
"
where"the"mapping"func/on"!"is"determined"by"the"corner"points"
of"Q"and"their"images"on"""
""
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Optimization Algorithm (Overview) 

Directly"minimizing"O"="simultaneously"op/mizing"the"polycube"domain"shape"
as"well"as"the"surface"mapping"

"""""""""O( T↓1 ,2 T↓2 ,2…,2 T↓3U↓V  , W↓1 , W↓2 ,…, W↓3U↓V  )"
where"(W↓3)−2 , W↓3)−2 ,W↓3)−2 )"is"a"corner"point,""
""""and" (T↓3)−2 , T↓3)−2 ,T↓3)−2 )"is"its"preIimage"on"the"surface"

! O is nonlinear, and the derivatives of O over T@ is unknown,  is nonlinear, and the derivatives of O over T@ is unknown,  over T@ is unknown,  is unknown, 
!  The geometric constraints are also complicated 

! directly solving this optimization is very expensive 

! Approach: to optimize O over T and W iteratively  over T and W iteratively  and W iteratively  iteratively 

Optimizing Polycube Domain Shape 
Op/mizing"domain"shapes"{2W)2}"to"reduce"O"
!  Subject"to"the"following"constraints"

1)  Each"cube"facet"has"planarity"
2)  Consistency"between"adjacent"facets"
3)  Preserving"total"area"

"
"
"
"

Optimizing Polycube Domain Shape (Cont.) 

Quar/c"Energy"with"Bounded"Linear"Constraints"
"
"
BarzilaiIBorwein"gradient"projec/on"op/miza/on"algorithm"

A"firstIorder,"nonImonotone"gradient"projec/on"algorithm"
"

Optimizing Polycube Surface Mapping 
Optimizing { T↓) }, the corner points on the model 

When pre-images of corners move, we don’t have close form of E  
(need to retrace shortest paths, and re-compute piecewise harmonic maps) 
! Optimized upon a local parametric (u,v) chart centered on each corner,  
! Nonlinear optimization with 2NC parameters 
! No gradient information 

 
 



Optimizing Polycube Surface Mapping (Cont.) 

Objective function (once sub-patches are segmented) 
Bounded summation of signed squares of functions 

 
 
!  An efficient derivative-free optimization solver 

(Locally, O(n) evaluation to initialize the quadratic model;  each iteration 
needs 1 evaluation to update the model) 

!  Efficient re-evaluations of harmonic mapping 
!  Harmonic maps need to be recomputed  whenever corners move 
!  Fast harmonic field updating [Xu et al. SMI’09] 

By Dynamic supernodal Choleskey update/downdate [Davis et al. 2009] 
(Initial cost O(n^3) ; O(k) each additional evaluation, k ~ length of shortest 
path (O(√- ) )) 

[Wan, Yin, Zhang, Zhang, Li, “A Topology-Preserving Optimization Algorithm for Polycube Mapping,” 
Comp. & Graph., 35(3):639-649, 2011] 

Optimizing Polycube Surface Mapping (Cont.) 
Op/mizing"(moving)"the"corner"points"on"the"model"

Some Optimization Results Cross-Shape Mapping via Polycube Domain 

Optimizing a Common Polycube Domain of Multiple Objects  
% Compatible Parameterization of Multiple Models 



Quad-Meshing via Polycube Mapping 
Quad/hexImeshes"can"be"constructed"on"the"polycube"Q""
With"a"polycube"parameteriza/on"!:2Q!2"","this"regular"tessella/on"can"be"

transferred"onto"the"given"model"""

Some Results 

[Video] 

[Shenghua Wan, Zhao Yin, Kang Zhang, Hongchao Zhang, Xin Li, “A Topology-Preserving Optimization Algorithm for Polycube Mapping,” 
Computers & Graphics (CAG), (SMI’11), Volume 35, Issue 3, Pages 639-649, 2011.]!

Optimizing Polycube Domain Construction 

[Yu,"Wan,"Zhang,"Li,"“Op/mizing"Polycube"Domain"Construc/on"for"Hexahedral"Remeshing,”"SIAM"
SPM’2013]"

"  Op/mizing"not"only"the"stretching"of"the"polycube,"but"also"the"layout"of"
the"polycube"domain""

[Wan, Yin, Zhang, Zhang, Li, “A Topology-preserving Optimization Algorithm for 
Polycube Mapping,” SMI’11] 

Optimizing Polycube by Morphological Operations 
[Yu,"Wan,"Zhang,"Li,"“Op/mizing"Polycube"Domain"Construc/on"for"Hexahedral"Remeshing,”"SIAM"

SPM’2013]"

Given"a"solid"model"""(with"boundary"Y),"to"construct"a"desirable"solid"
polycube"domain"Ω2(with"boundary"Q)"and"the"mapping"!:2"→Ω"

"A"3Isteps"op/miza/on"algorithm:"
1)  PreIdeforma/on""
2)  Polycube"construc/on"and"op/miza/on""
3)  Mapping"computa/on"

"



Step 1: Pre-deformation - Motivation 
Polycube"directly"extract"from"""will"lead"to"complex"domain."

Star/ng"with"an"axisIaligned"shape"will"get"to"a"simpler"shape."

Step 1: Pre-deformation - Computation 
 Apply the rotational-driven deformation on Y [Gregson et al. CGF11] 

!  Cluster Y to six types of patches based on minimal rotations to axes (±2
T,2±2Z,2±2[). 

!  Use the minimal rotation to deform the surface (solving a Poisson  
equation). 

!  Iteratively conduct the deformation until it converges.  
 

 
 
 

Pre-deformation Result:  
    a Pseudo-Polycube 
!  Geometrically axis-aligned, but 

not topologically invalid 
(corners not always valence-3) 

"  Need to extract correct 
Polycube structure from 
pseudo-polycube.!

Step 2: Polycube Construction 
Extract"the"polycube"Q"from"the"pseudoIpolycube"\"by"voxeliza/on"
!  Need"to"select"voxel"size"to""

! """Capture"topological"features"without"geeng"too"fine"grid"

!  Analyze"the"height"func/ons"on"\"to"decide"the"voxel"size:"
1)  Detect"cri/cal"points"in"4,25,26"direc/ons,"and"in"each"direc/on"cluster"nearby"

cri/cal"points"using"a"representa/ve;"

2)  In"each"direc/on,"separate"the"range"of"height"func/on"using"the"value"of"the"
cri/cal"points."

3)  Choose"1/3"of"the"minimal"interval"as"the"voxel"size."

"

Step 3: Polycube Optimization 
The"voxeliza/on"results"can"be"further"simplified""

Inspired"by"the"morphological"opera/ons,"we"propose"a"polycube"op/miza/on"
algorithm"

"

"



Morphological Operations 
Erosion:"Removes"a"layer"of"boundary"cells"
Dila*on:"Inserts"a"new"layer"of"boundary"cells"
Opening:"An"erosion"followed"by"a"dila/on"
Closing:"A"dila/on"followed"by"an"erosion"

However, morphological operations could not preserve topology. 
Need: Topology-preserving morphological operations 

Homotopic Morphology: Simple Removal 

Define"the"Simple'Removal"[Zhou"et"al."TVCG07]."
"If"a"LID"element"is"shared"by"one"(L+1)ID"element,"
!  Simple"element:"the"$kI$D"element"
! Witness:"the"(L+1)ID"element"

Simple2Removal:"a"simple"element"can"only"be"removed"together"with"it's"
witness"

%"Itera/vely"applying"simple"removal"won't"change"the"topology."
"
"
"

Homotopic Morphological Operations 
Based"on"Simple'Removal,"we"can"define:"
!  Homotopic"erosion:"An"erosion"on"boundary"layer"of" Q "that"only"remove"simple"

removable"voxels"

!  Homotopic"dila/on:"A"dila/on"can"be"seen"as"an"erosion"on"the"dual"space"of" ,↑3 / 
Q 2"

!  Homotopic"opening:"A"homotopic"erosion"followed"by"a"homotopic"dila/on"
!  Homotopic"closing:"A"homotopic"dila/on"followed"by"a"homotopic"erosion"
"

Step 3: Polycube Optimization 
A"good"polycube"should:"(1)"be"simple,"and"(2)"be"similar"to"the"pseudo"polycube"
""We"define"the"following"energy:"

!  Domain"Simplicity:"(Corner"Number,"smaller"is"simpler)"
!  Geometric"Devia/on:"where""is"the"distance"from"vertex""to""
,"where""is"the"weight"to"balance"simplicity"and"similarity"

Video:"Polycube"Op/miza/on"Example"
"
"



Step 3: Polycube Optimization 
A"good"polycube"should:"(1)"be"simple,"and"(2)"be"similar"to"the"pseudo"polycube"
""We"define"the"following"energy:"

!  Domain"Simplicity:"(Corner"Number,"smaller"is"simpler)"
!  Geometric"Devia/on:"where""is"the"distance"from"vertex""to""
,"where""is"the"weight"to"balance"simplicity"and"similarity"

Video:"Polycube"Op/miza/on"Example"
"
"

Step 4: Parameterization: Initial Surface Map 

Polycube Surface Map: boundary condition of volumetric map 
1)  Direct projection (\→2Q), with geometric similarity 
2)  Local relaxation is applied (on Q, locally flattened) to reduce the 

mapping distortion and flip-overs. 
!  Most flip-overs will be eliminated (even a few local flip-overs 

exist, won't change the boundary condition and hence won’t 
affect volumetric mapping computation). 

Step 4: Parameterization: Volumetric Mapping 

Op/mizing"Volumetric"Parameteriza/on:"
!  Near"boundary:"gradient"aligned"with"surface"normal."
!  Interior"region:"gradients"smooth"and"orthornomal."

Frame"Field"T"to"Guide"Parameteriza/on"on"""
!  Composed"of"3"perpendicular"unit"vector"fields."
!  In"each"tetrahedron"the"frame"is""T↓) =( 4↓)↑1 ,2 4↓)↑2 ,2 4↓)↑3 )"

Volumetric"Parameteriza/on"following"a"given"Frame"Field"
"
"

[Nieser, Reitebuch, and Polthier, “Cubecover parameterization of 3d volumes,” CGF, 
30(5), 2011.] 

Step 4: Parameterization: Frame Field Solving 

Seeng"Boundary"Frames"
!  Ini/ally"determined"by"polycube"surface"map"
!  Op/mized"on"tangent"plane"with"interior"frames"

"
"
Interior Frame Field Smoothing 

!  In )-th tet, frame T↓) ←2( R↓) ,2 ]↓) ,2 ^↓) ). 
!  Intuitively, small changes on Euler angles on adjacent frames 

indicates better smoothness. 
!  We define a simple smoothness energy (similar to [Li et al. 

TOG12], but without considering rotational symmetry): 



Results and Comparisons: Polycube Construction 

Compared with [He et al. SMI09] 
!  Our constructed polycube 

domains are much simpler 

Compared"with"[Gregson"et"al."SGP11]"
!  Our"algorithm"is"more"robust"on"

complex"models."

Results and Comparisons: Mapping Distortion 

Mapping distortion can measured using the quality of the constructed 
hexahedral mesh. 

A few common criteria on element shape (angle distortion) and element 
uniformity (volume distortion): 
!  Scaled Jacobian _ 2 
!  Dihedral angles (the average value R  and standard deviation 

`↓R ) 
!  Volume distortion  a↓N   
!  # of singularities in the resultant hex-meshes 

 

[W. Yu, K. Zhang, S. Wan, X. Li, “Optimizing Polycube Domain Construction for Hexahedral Remeshing,” Computer-aided Design, 
(SIAM/ACM Conference on Geometric & Physical Modeling GD/SPM13), Vol. 46, Pages 258-68, 2013.]!

Results and Comparisons: Hexahedral Meshing 

!  Gregson,"Sheffer,"and"Zhang."AllIhex"mesh"genera/on"via"volumetric"polycube"deforma/on."
CGF,"30(5),"2011."

!  Nieser,"Reitebuch,"and"Polthier."Cubecover"parameteriza/on"of"3d"volumes."CGF,"30(5),"2011."
!  Li,"Liu,"Xu,"Wang,"and"Guo."AllIhex"meshing"using"singularityIrestricted"Field."ACM"Trans."

Graph.,"November"2012."

VS!

Results and Comparisons: Hexahedral Meshing 

!  Gregson,"Sheffer,"and"Zhang."AllIhex"mesh"genera/on"via"volumetric"polycube"deforma/on."
CGF,"30(5),"2011."

!  Nieser,"Reitebuch,"and"Polthier."Cubecover"parameteriza/on"of"3d"volumes."CGF,"30(5),"2011."
!  Li,"Liu,"Xu,"Wang,"and"Guo."AllIhex"meshing"using"singularityIrestricted"Field."ACM"Trans."

Graph.,"November"2012."

VS!



Results and Comparisons: Hexahedral Meshing 

!  Gregson,"Sheffer,"and"Zhang."AllIhex"mesh"genera/on"via"volumetric"polycube"deforma/on."
CGF,"30(5),"2011."

!  Nieser,"Reitebuch,"and"Polthier."Cubecover"parameteriza/on"of"3d"volumes."CGF,"30(5),"2011."
!  Li,"Liu,"Xu,"Wang,"and"Guo."AllIhex"meshing"using"singularityIrestricted"Field."ACM"Trans."

Graph.,"November"2012."VS!

Video: Hexahedral Meshing Results 

[Video] 

[W. Yu, K. Zhang, S. Wan, X. Li, “Optimizing Polycube Domain Construction for Hexahedral Remeshing,” Computer-aided Design, 
(SIAM/ACM Conference on Geometric & Physical Modeling GD/SPM13), Vol. 46, Pages 258-68, 2013.]!

Generalized Polycube (GPC) 

!  [Li"et"al."SMI10]"[Li"et"al."TVCG13]"
!  A"GPC"is"a"3D"manifold"topologically"glued"by"a"set"of"cubes,"where"

! Any"pair"of"facets"can"be"glued"
! AxisIalignment"not"required"
! Realiza/on"in"3D"space"not"require"
! Represented"by"a"GPC"graph"

A Topological GPC Construction Approach 

!  [Li"et"al."SMI10]"[Li"et"al."TVCG13]"
!  By"a"topological"cube"decomposi/on"generated"based"on"the"surface"pants"

decomposi/on"

Bo Li, Xin Li, Kexiang Wang, Hong Qin, “Surface Mesh to Volumetric Spline Conversion with 
Generalized Poly-cubes,” IEEE Trans. on Visualization and Computer Graphics (TVCG), 2013.  



Some GPC Parameterization Results Limitations of Parameterization on Polycube Domains 

!  Big"distor/on"near"polycube"corners."
!  Construc/ng"an"Op/mal"Polycube/GPC"Domain"which"Minimizes"the"Mapping"

Distor/on"is"s/ll"challenging""
! Now"people"solve"them"separately;"
! Op/mizing"them"simultaneously"is"very"expensive"

!  Modeling"complex"feature"curves"on"polycube"domain"may"be"challenging"
"

Applications 

G. Patanè, X.D. Gu, X.S. Li 

Contents 

1)  Shape Analysis and Retrieval 
2)  Medical Applications 

a.  Spatiotemporal Parameterization of Medical Scans ! 
Respiratory Motion Modeling in Lung Tumor 
Radiotherapy 

b.  Brain Matching and Analysis 
c.  3D Body Scanning for Medical Diabetes Diagnosis 

3)  Forensic Skull Restoration and Facial Reconstruction 
4)  Optimal Autonomous Robotic Pipeline Inspection Planning 



Shape Comparison and Retrieval 

Bending difference: 
δH = H1 – H2 

Stretching ratio: 
λ=A1 / A2 

With least-distorted registration, we can measure bending difference 
and stretching ratio 

Shape difference :  !!=∫$↓2 ↑▒(*+↑2 + ,↑2 )./  

Mean curvature: 
H1 

Mean curvature: 
H2 

Conformal Representation Theory: 

(please check [Li et al. TVCG’ 08] for details) 

[Li, Bao, Guo, Jin, Gu, Qin, Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology,  
IEEE Transactions on Visualization and Computer Graphics, 2008] 

Shape Comparison and Retrieval 

(please check [Li et al. TVCG’ 08] for details) 

[Li, Guo, Wang, He, Gu, Qin, “Meshless Harmonic Volumetric Mapping using Fundamental Solution 
Methods,” IEEE Transactions on Automation Science and Engineering (TASE), 6(3):409 - 422, 2009] 

Motion and deformation analysis for temporal sequences 

deformation 
energy  
!  
shape difference 
 

Shape Comparison and Retrieval 

(please check [Li et al. TVCG’ 08] for details) 

[W. Yu and X. Li, “Computing 3D Shape Guarding and Star Decomposition,” Computer  Graphics Forum 2011] 

Shape&comparison&
of&48&models&in&the&
TOSCA&dataset.&&
"  Black&indicates&

the&smaller&
difference.&

"  Black&blocks&
indicate&similar&
groups&of&
models.�

Motion Modeling for Radiotherapy Management 

" Motion Modeling for Lung Cancer Radiotherapy:  
" Most lung-cancer (most common cause of cancer-related deaths in the US) 

patients will take Radiotherapy Treatment, in which external beam applies 
radiation on the tumor 

" Goal: to radiate only the tumor; avoid damaging surrounding tissue/organs  
"  Difficulty in capturing their geometry and trajectory: 

"  Complicated spatial relationship of the tumor with normal tissue 
structures (spinal cord, heart, trachea…) 

"  Respiratory cycle involves movement of normal tissues ! heavily 
influences the tumor’s motion and its deformation 

 

[Iyengar, Li et al. “Toward More Precise Radiotherapy Treatment of Lung 
Tumors,” IEEE Computer, Vol. 45, Issue 1, pp. 59-65, 2012]!

" With the advancing hardware to shape the radiation 
from different directions   

! Pressing need for Radiotherapy Management 
!



4D Parameterization Problem 
"  Input: 

" 4D images (a sequence of volumetric CT images) 01,!02,!…! 0↓1  scanned 
during several respiratory cycles 

" Output: 
" A 4D parameterization of the irradiation volume 2(3,4,5,6) 

" Given 3 ! the location + shape of corresponding tumor/organs 

" The reconstructed deformation model 
" Can analyze the motion and 

deformation of the organs during 
the respirations 2(3,4,5,6),!3<1 

" Can predict the geometry and 
trajectory of the organs, and guide 
the radiation beam 2(3,4,5,6),!3>1 

Computation Pipeline 

A computational framework: 

1)   Segment geometries from images 
(important volume regions, important 
iso-surfaces) 

2)  Build Adaptive FEM meshes 
3)  Compute cross-volumetric mapping and 

the temporally deforming model 

Computation Pipeline 

A computational framework: 

1)  Segment geometries from images 
(important volume regions, important iso-
surfaces) 

2)   Build Adaptive FEM meshes 
3)  Compute cross-volumetric mapping and 

the temporally deforming model 
 

Computation Pipeline 

A computational framework: 

1)  Segment geometries from images 
(important volume regions, important iso-
surfaces) 

2)  Build Adaptive FEM meshes 
3)   Compute cross-volumetric mapping  

and the temporally deforming model 

[H. Xu, X. Li, “Consistent Feature-aligned 4D Image Registration for Respiratory Motion Modeling,”  
International Symposium on Biomedical Imaging, 2013.] 



Matching Accuracy on Motion Modeling 

[Xu and Li, “A Symmetric 4D Registration Algorithm for 
Respiratory Motion Modeling”,MICCAI 2013]. 

Registration error: 0.048% ~ 0.12% 

DIR-LAB Benchmark: Anatomical landmarks provided for matching accuracy assessment.  

A&4D&(3D&+&t)&matching&algorithm&to&register&the&dynamic&volume&image&scans:&
the&constructed&deformable&geometry&can&approximate&the&respiratory&moFon&of&the&
lung&tumor&and&organs&in&the&radiotherapy&treatment&planning&and&opFmizaFon&

Matching Accuracy on Motion Modeling 

[Xu and Li, “A Symmetric 4D Registration Algorithm for Respiratory Motion Modeling,” MICCAI 2013]. 

POPIVAND Benchmark: Anatomical landmarks provided for matching accuracy assessment.  

A Motion Modeling Result 
A&4D&(3D&+&t)&matching&algorithm&to&register&the&dynamic&volume&image&scans:&
the&constructed&deformable&geometry&can&approximate&the&respiratory&moFon&of&the&
lung&tumor&and&organs&in&the&radiotherapy&treatment&planning&and&opFmizaFon&

For&more&details,&please&visit:&
hJp://www.ece.lsu.edu/xinli/CBiomedicine/TumorTracking.html&

[Xu and Li, “A Symmetric 4D 
Registration Algorithm for Respiratory 
Motion Modeling,“ MICCAI 2013]. 

Brain Cortex Modeling, Matching, and Analysis 

Curvature Detection 
Computing Curvature  
Principal Directions 

Detecting 0-Curvature  
  Contour Segmenting Gyri and Sulci 

[Y. He, X. Li, X. 
Gu, H. Qin, 

“Brain Image 
Analysis using 

Spherical 
Splines”, in 

EMMCVPR05.] 



Brain Cortex Modeling, Matching, and Analysis 

Curvature Detection 
Computing Curvature  
Principal Directions 

Detecting 0-Curvature  
  Contour Segmenting Gyri and Sulci 

[Y. He, X. Li, X. 
Gu, H. Qin, 

“Brain Image 
Analysis using 

Spherical 
Splines”, in 

EMMCVPR05.] 

3D Body Scanning for Diabetes Diagnosis 

"  Inexpensive real-time 3D body scanning system 
"  Digital body size and volume measurement can be conducted to replace the traditional 

physical measurement. 
"  Desirable accuracy (circumference errors < 2cm)   
"  Efficient measurement and posture/motion analysis on diabetes patients. 

Skull and Facial Modeling and Restoration 

Damaged Skull Reassembly 
and Completion 

"  Restoring Fragmented Geometries, Synthesizing Constrained Geometry 

Volumetric Soft-tissue Modeling for Bone/Plastic 
Surgery Planning 

"  Shape Modeling Problems 
"  Fragmented skull reassembly and damaged skull completion 
"  Facial tissue reconstruction from skull 

Skull Reassembly and Completion 
"  Fragmented Skull Reassembly 

"  Fragments reassembly guided by template:  
"  Partial cross-shape mapping (between template and fragments) 

 
[Wei, Yu, Li, “Skull Assembly and Completion using Template-based Surface Matching,” 
3DIMPVT 2011] 



Skull Reassembly and Completion 
"  Fragmented Skull Reassembly 

"  Fragments reassembly guided by template:  
"  Partial cross-shape mapping (between template and fragments) 

 
[Wei, Yu, Li, “Skull Assembly and Completion using Template-based Surface Matching,” 
3DIMPVT 2011] 
 
 
 
 
 
 
 
 
[Yu, Li, “Fragmented Skull Modeling using Heat Kernels,” GMP 2012.] 

Skull Reassembly and Completion 
"  Fragmented Skull Reassembly 

"  Fragments reassembly guided by template:  
"  Partial cross-shape mapping (between template and fragments) 

"  Fragments reassembly guided by break-region analysis 
"  Partial region matching (between adjacent fragments) 

 
 
 
 
 
 
 

[Yin, Wei, Manhein, Li, “An Automatic Assembly and Completion Framework for 
Fragmented Skulls,” ICCV 2011] 

Skull Reassembly and Completion 
"  Fragmented Skull Reassembly 

"  Fragments reassembly guided by template:  
"  Partial cross-shape mapping (between template and fragments) 

"  Fragments reassembly guided by break-curve analysis 
"  Partial region matching (between adjacent fragments) 

"  Damaged Skull Completion  
"  Iterative symmetry + template guided model completion 

 
 
 
 
 
 
 

Facial Tissue Modeling 

"  Soft-tissue modeling based on volumetric mapping, using cross-skull 
surface matching as boundary constraints 

"  Current Practice: Manual Reconstruction using clay models 



Autonomous Robotic Exploration Planning 

X. Li, W. Yu, X. Lin, and S. S. Iyengar. "On Optimizing Autonomous Pipeline Inspection in 3D Environment," 
IEEE Transactions on Robotics (TRO), vol. 28, no. 1, pp. 223-233, 2012. 
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