
The LEGO Movie: Construction, Animation And Demolition

Aloys Baillet Daniel Heckenberg Eoin Murphy Aidan Sarsfield Bryan Smith
Animal Logic∗

Figure 1: Set destruction with volumetric simulation of explosions and dust clouds converted to bricks. c©Warner Bros Inc., Village Roadshow,
The LEGO Corporation. All rights reserved.

Abstract

The creative requirements for The LEGO Movie demanded that the
entire world be made of individual LEGO bricks, with no cheat-
ing. Whole buildings needed to be demolished into their component
bricks, vehicles pulled apart and re-assembled differently and some
parts of the set were to be ripped up and formed into other objects.
Even simulated FX like oceans, dust and clouds were to be made of
bricks. To achieve this challenging brief and support rendering of
massive amounts of geometry, we added a brick-based layer under
our existing asset pipeline, which we kept ’live’ all the way through
to final rendering. This approach allowed us to leverage brick spe-
cific render optimisations, and to automate various tasks such as
model building and surfacing.

1 Construction

LEGO supplied us with a database of their bricks that contained
useful metadata. Each brick had an ID which was used to look up
information about its size, weight, center of gravity and connectiv-
ity points. For flexible pieces such as chains and tubes, a simple
joint chain was also available for deformation. A library of over
2000 different bricks needed for the movie were re-modelled us-
ing SubDivision Surfaces, which were ideal for representing the
”studs” and bevelled edges with minimal topology.

We used LEGO Digital Designer(LDD), a freely downloadable
tool, to build our models. LDD provided access to the library
of available bricks and the palette of LEGO materials, and also
handled brick connectivity, snapping, grouping and other LEGO-
specific functionality. The files produced by LDD were fed into our
”ShellBake” process which generated multiple Levels of Detail for
the LEGO model (e.g with inner studs and tubes stripped out) and in
a number of forms (render geometry, GL-friendly geometry, point
clouds for FX), all tagged with indices into the brick database. Ac-

∗{aloysb, danielh, eoinm, aidan, bryans}@al.com.au

companying ”sidecar” data contained heavier, often LEGO-specific
data which was useful for the shader at render time.

There were 3 layers to the surfacing of models - an automatic as-
signment of colors, transparency and other visual properties from
the LDD models; a semi-procedural level of per-brick surfacing to
provide detail such as scratches, wear and tear, decals etc.; and a
’model’ level to add grunge and oxidization effects. The per-brick
surfacing could contain texture and other variations to reduce visual
repetition.

2 Animation

The Environment and Layout teams dressed the sets traditionally,
but could tweak position and visibility of any bricks. New bricks
could also be created by choosing from the brick library, or dupli-
cating an existing brick in the scene.

Traditional rigging techniques could not handle large props made
of thousands of bricks, so our node-based procedural system ALF
was used with a combination of dynamic reparenting and geome-
try merging to enable efficient rig building, and fast playback for
animators. We also developed a novel “Brick Blur” technique that
allowed animators to artistically represent motion blur as a smear
of colored bricks replacing the original character.

3 Demolition

Destroying LEGO models was made easier thanks to their brick-
based nature. Houdini was used to set up glue constraint networks
based on connectivity for Rigid Body Simulation. Voxel-based ef-
fects such as smoke, explosions and water were done in the tradi-
tional way, then replaced with LEGO bricks of a matching size and
shape. Crowds were also brick-based, with possibilities to ’mix and
match’ minifigure parts for extra variation.

For rendering, a custom PRMan procedural was used to instance
and optimise bricks on the fly. Tools were developed to allow
lighters to instance light rigs or add incandescence to glowing
bricks based on brick properties. The sheer quantity of geometry
to be rendered was the biggest challenge, so aggressive geometric
instancing was required as well as simplifying the calculation of
transparency and shadows in the shader. Lighters could also per-
form custom optimisations based on brick properties such as curva-
ture, concavity and so on.


